Approximate Bayesian approach to non-Gaussian estimation in a linear model with dependent state and noise vectors

被引:0
|
作者
Hoang, HS
Baraille, R
Talagrand, O
DeMey, P
机构
[1] CNES, CNRS, GRGS, SHOM, F-31401 Toulouse 4, France
[2] CMO, GRGS, SHOM, F-31401 Toulouse, France
[3] ENS, LMD, F-75231 Paris 05, France
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2001年 / 43卷 / 03期
关键词
linear model; non-Gaussian estimation; robust Bayesian estimation;
D O I
10.1007/s00245-001-0005-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper extends the results of Masreliez [8] on the design of non-Gaussian estimators for a more general class of the parameter estimation problem when the system state and the observation noise may be dependent and non-Gaussian simultaneously It is shown that the proposed non-Gaussian algorithms can approximate with high precision the minimum mean square estimator. Application of the approach to the design of different optimal (and stable) estimation algorithms is illustrated. The efficiency of the proposed algorithms is tested in some simulation experiments.
引用
收藏
页码:203 / 220
页数:18
相关论文
共 50 条
  • [1] Approximate Bayesian Approach to Non-Gaussian Estimation in a Linear Model with Dependent State and Noise Vectors
    H. S. Hoang
    R. Baraille
    O. Talagrand
    P. DeMey
    [J]. Applied Mathematics and Optimization, 2001, 43 : 203 - 220
  • [2] An Interacting Multiple Model Approach for State Estimation with Non-Gaussian Noise Using a Variational Bayesian Method
    Shen, Chen
    Xu, Dingjie
    Huang, Wei
    Shen, Feng
    [J]. ASIAN JOURNAL OF CONTROL, 2015, 17 (04) : 1424 - 1434
  • [3] Gaussian State Estimation with Non-Gaussian Measurement Noise
    Tollkuehn, Andreas
    Particke, Florian
    Thielecke, Joern
    [J]. 2018 SYMPOSIUM ON SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2018,
  • [4] NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION
    GORDON, NJ
    SALMOND, DJ
    SMITH, AFM
    [J]. IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) : 107 - 113
  • [5] APPROXIMATE NON-GAUSSIAN BAYESIAN-ESTIMATION AND MODAL CONSISTENCY
    GORDON, NJ
    SMITH, AFM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1993, 55 (04): : 913 - 918
  • [6] State estimation in the presence of non-Gaussian noise
    Plataniotis, KN
    Venetsanopoulos, AN
    [J]. IEEE 2000 ADAPTIVE SYSTEMS FOR SIGNAL PROCESSING, COMMUNICATIONS, AND CONTROL SYMPOSIUM - PROCEEDINGS, 2000, : 230 - 235
  • [7] Robust estimation in multiple linear regression model with non-Gaussian noise
    Akkaya, Aysen D.
    Tiku, Moti L.
    [J]. AUTOMATICA, 2008, 44 (02) : 407 - 417
  • [8] A numerical Bayesian approach for DOA and frequency estimation of exponential signals in Gaussian and non-Gaussian noise
    Kannan, B
    Fitzgerald, WJ
    [J]. NINTH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1998, : 264 - 267
  • [9] Bayesian Approach for Distribution System State Estimation With Non-Gaussian Uncertainty Models
    Pegoraro, Paolo Attilio
    Angioni, Andrea
    Pau, Marco
    Monti, Antonello
    Muscas, Carlo
    Ponci, Ferdinanda
    Sulis, Sara
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (11) : 2957 - 2966
  • [10] State Estimation in Unknown Non-Gaussian Measurement Noise using Variational Bayesian Technique
    Zhu, Hao
    Leung, Henry
    He, Zhongshi
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (04) : 2601 - 2614