Approximate Bayesian approach to non-Gaussian estimation in a linear model with dependent state and noise vectors

被引:0
|
作者
Hoang, HS
Baraille, R
Talagrand, O
DeMey, P
机构
[1] CNES, CNRS, GRGS, SHOM, F-31401 Toulouse 4, France
[2] CMO, GRGS, SHOM, F-31401 Toulouse, France
[3] ENS, LMD, F-75231 Paris 05, France
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2001年 / 43卷 / 03期
关键词
linear model; non-Gaussian estimation; robust Bayesian estimation;
D O I
10.1007/s00245-001-0005-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper extends the results of Masreliez [8] on the design of non-Gaussian estimators for a more general class of the parameter estimation problem when the system state and the observation noise may be dependent and non-Gaussian simultaneously It is shown that the proposed non-Gaussian algorithms can approximate with high precision the minimum mean square estimator. Application of the approach to the design of different optimal (and stable) estimation algorithms is illustrated. The efficiency of the proposed algorithms is tested in some simulation experiments.
引用
收藏
页码:203 / 220
页数:18
相关论文
共 50 条
  • [11] APPROXIMATE NON-GAUSSIAN FILTERING WITH LINEAR STATE AND OBSERVATION RELATIONS
    MASRELIEZ, CJ
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, AC20 (01) : 107 - 110
  • [12] Nonlinear Bayesian Estimation of BOLD Signal under Non-Gaussian Noise
    Khan, Ali Fahim
    Younis, Muhammad Shahzad
    Bajwa, Khalid Bashir
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
  • [13] A new robust dynamic state estimation approach for power systems with non-Gaussian noise
    Chen, Tengpeng
    Liu, Fangyan
    Luo, Hongxuan
    Foo, Eddy Y. S.
    Sun, Lu
    Sun, Yuhao
    Gooi, Hoay Beng
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 158
  • [14] Constrained State Estimation for Nonlinear Systems with non-Gaussian Noise
    Ishihara, Shinji
    Yamakita, Masaki
    [J]. PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 1279 - 1284
  • [15] Improved Bayesian estimation of weak signals in non-Gaussian noise by optimal quantization
    Bhat, PR
    Rousseau, D
    Anand, GV
    [J]. 2004 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATIONS (SPCOM), 2004, : 330 - 334
  • [16] PARRALELIZATION OF NON-LINEAR & NON-GAUSSIAN BAYESIAN STATE ESTIMATORS (PARTICLE FILTERS)
    Jarrah, Amin
    Jamali, Mohsin M.
    Hosseini, S. S. S.
    Astola, Jaakko
    Gabbouj, Moncef
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2506 - 2510
  • [17] Efficient estimation for non-linear and non-Gaussian state space models
    Huang, DW
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 5036 - 5041
  • [18] AN APPROXIMATE METHOD OF STATE ESTIMATION FOR NON-LINEAR DYNAMICAL SYSTEMS WITH STATE-DEPENDENT NOISE
    SUNAHARA, Y
    YAMASHITA, K
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1970, 11 (06) : 957 - +
  • [19] SOURCE NUMBER ESTIMATION IN NON-GAUSSIAN NOISE
    Anand, G. V.
    Nagesha, P. V.
    [J]. 2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 1711 - 1715
  • [20] ADAPTIVE PHASE ESTIMATION IN NON-GAUSSIAN NOISE
    BROSSIER, JM
    [J]. SIGNAL PROCESSING, 1995, 43 (03) : 245 - 251