Approximate Bayesian approach to non-Gaussian estimation in a linear model with dependent state and noise vectors

被引:0
|
作者
Hoang, HS
Baraille, R
Talagrand, O
DeMey, P
机构
[1] CNES, CNRS, GRGS, SHOM, F-31401 Toulouse 4, France
[2] CMO, GRGS, SHOM, F-31401 Toulouse, France
[3] ENS, LMD, F-75231 Paris 05, France
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2001年 / 43卷 / 03期
关键词
linear model; non-Gaussian estimation; robust Bayesian estimation;
D O I
10.1007/s00245-001-0005-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper extends the results of Masreliez [8] on the design of non-Gaussian estimators for a more general class of the parameter estimation problem when the system state and the observation noise may be dependent and non-Gaussian simultaneously It is shown that the proposed non-Gaussian algorithms can approximate with high precision the minimum mean square estimator. Application of the approach to the design of different optimal (and stable) estimation algorithms is illustrated. The efficiency of the proposed algorithms is tested in some simulation experiments.
引用
收藏
页码:203 / 220
页数:18
相关论文
共 50 条
  • [41] Parametric Estimation from Approximate Data: Non-Gaussian Diffusions
    Robert Azencott
    Peng Ren
    Ilya Timofeyev
    [J]. Journal of Statistical Physics, 2015, 161 : 1276 - 1298
  • [42] EFFICIENCY ESTIMATION OF ONE TYPE OF THE NON-GAUSSIAN NOISE
    MASLOV, ON
    SHATALOV, VG
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1990, 33 (09): : 79 - 81
  • [43] The influence of non-Gaussian noise on the accuracy of parameter estimation
    Li, Xue-Lian
    Li, Jun-Gang
    Wang, Yuan-Mei
    [J]. PHYSICS LETTERS A, 2017, 381 (04) : 216 - 220
  • [44] Estimation of the Parameters of Sinusoidal Signals in Non-Gaussian Noise
    Li, Ta-Hsin
    Song, Kai-Sheng
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (01) : 62 - 72
  • [45] Beyond Gaussian Noise: A Generalized Approach to Likelihood Analysis with Non-Gaussian Noise
    Legin, Ronan
    Adam, Alexandre
    Hezaveh, Yashar
    Perreault-Levasseur, Laurence
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2023, 949 (02)
  • [46] Frequentist optimality of Bayesian wavelet shrinkage rules for Gaussian and non-Gaussian noise
    Pensky, Marianna
    [J]. ANNALS OF STATISTICS, 2006, 34 (02): : 769 - 807
  • [47] OPTIMAL ESTIMATION OF SIGNAL PARAMETERS WITH NON-GAUSSIAN NOISE
    VALEYEV, VG
    [J]. ENGINEERING CYBERNETICS, 1971, 9 (02): : 324 - &
  • [48] Threshold parameter estimation in nonadditive non-Gaussian noise
    Maras, AM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (07) : 1681 - 1688
  • [49] Estimation of weak signal parameters in non-Gaussian noise
    Cherdyntsev, V
    Doroshevich, M
    [J]. SIGNAL ANALYSIS & PREDICTION I, 1997, : 87 - 90
  • [50] Non-gaussian Test Models for Prediction and State Estimation with Model Errors
    Michal BRANICKI
    Nan CHEN
    Andrew J.MAJDA
    [J]. Chinese Annals of Mathematics(Series B), 2013, 34 (01) : 29 - 64