Robust estimation in multiple linear regression model with non-Gaussian noise

被引:30
|
作者
Akkaya, Aysen D. [1 ]
Tiku, Moti L. [1 ]
机构
[1] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey
关键词
linear regression; robustness; data anomaly; modified maximum likelihood; outliers;
D O I
10.1016/j.automatica.2007.06.029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The traditional least squares estimators used in multiple linear regression model are very sensitive to design anomalies. To rectify the situation we propose a reparametrization of the model. We derive modified maximum likelihood estimators and show that they are robust and considerably more efficient than the least squares estimators besides being insensitive to moderate design anomalies. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:407 / 417
页数:11
相关论文
共 50 条
  • [1] Robust subspace estimation in non-Gaussian noise
    Kozick, RJ
    Sadler, BM
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 3818 - 3821
  • [2] Robust direction-of-arrival estimation in non-Gaussian noise
    Yardimci, Y
    Cetin, AE
    Cadzow, JA
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (05) : 1443 - 1451
  • [3] Robust Blind Spectral Estimation in the Presence of Non-Gaussian Noise
    Kees, Joel T.
    Ernst, Joseph M.
    Headley, William C.
    Beex, A. A.
    [J]. MILCOM 2017 - 2017 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2017, : 629 - 634
  • [4] Robust Signal-to-Noise Ratio Estimation in Non-Gaussian Noise Channel
    Lo, Ying-Siew
    Lim, Heng-Siong
    Tan, Alan Wee-Chiat
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2016, 91 (02) : 561 - 575
  • [5] Robust Signal-to-Noise Ratio Estimation in Non-Gaussian Noise Channel
    Ying-Siew Lo
    Heng-Siong Lim
    Alan Wee-Chiat Tan
    [J]. Wireless Personal Communications, 2016, 91 : 561 - 575
  • [6] Detection and estimation of multiple weak signals in non-Gaussian noise
    Nelson, D. J.
    [J]. FLUCTUATION AND NOISE LETTERS, 2007, 7 (04): : L491 - L499
  • [7] Detection and estimation of multiple weak signals in non-Gaussian noise
    Nelson, D. J.
    [J]. NOISE AND FLUCTUATIONS IN PHOTONICS, QUANTUM OPTICS, AND COMMUNICATIONS, 2007, 6603
  • [8] The robust multi-innovation estimation algorithm for Hammerstein non-linear systems with non-Gaussian noise
    Wang, Xuehai
    Ding, Feng
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2021, 15 (07): : 989 - 1002
  • [9] Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise
    Yamada, Makoto
    Sugiyama, Masashi
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 643 - 648
  • [10] Approximate Bayesian approach to non-Gaussian estimation in a linear model with dependent state and noise vectors
    Hoang, HS
    Baraille, R
    Talagrand, O
    DeMey, P
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 43 (03): : 203 - 220