A Particle Swarm Optimization Approach for Parameter Identification of Lorenz Chaotic System

被引:1
|
作者
Modarres, Hamidreza [1 ]
Alfi, Alireza [1 ]
机构
[1] Shahrood Univ Technol, Fac Elect & Robot Engn, Shahrood 3619995161, Iran
关键词
VARIABLE-STRUCTURE CONTROL; ADAPTIVE SYNCHRONIZATION; COMMUNICATION;
D O I
10.1109/IECON.2009.5415058
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An important problem in engineering is the identification of nonlinear systems, among them chaotic systems have received particular attention due to their complex and unpredictable behaviors. In this paper, a Particle Swarm Optimization (PSO) technique is applied for online parameter identification of Lorenz chaotic system. The difficulties of online implementation mainly come from the unavoidable computational time to find a solution. Due to this, first an Improved Particle Swarm Optimization (IPSO) is proposed to increase the convergence speed and accuracy of the Standard Particle Swarm Optimization (SPSO) to save tremendous computation time. Second. IPSO is also improved to detect and determine the variation of parameters. Finally, a numerical example is given to verify the effectiveness of the proposed method compared to Genetic Algorithm (GA) and SPSO.
引用
收藏
页码:3127 / +
页数:2
相关论文
共 50 条
  • [31] An Ant Colony Optimization Approach for Parameter Identification of Piezoelectric Resonator Chaotic System
    Maamri, F.
    Bououden, S.
    Boulkaibet, I.
    2015 16TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA), 2015, : 811 - 816
  • [32] Parameter identification of underwater glider based on particle swarm optimization
    Wang, Li-Ming
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONIC INFORMATION ENGINEERING (CEIE 2016), 2016, 116 : 109 - 114
  • [33] Parameter identification of induction motor based on particle swarm optimization
    Picardi, C.
    Rogano, N.
    2006 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, VOLS 1-3, 2006, : 968 - +
  • [34] Parameter Identification of Thermoeletric Modules using Particle Swarm Optimization
    Ojeda G, Daniel R.
    de Almeida, Luiz A. L.
    Vilcanqui, Omar A. C.
    2015 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2015, : 812 - 817
  • [35] Particle swarm optimization based parameter identification applied to PMSM
    Liu, Li
    Cartes, David A.
    Liu, Wenxin
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 3064 - 3069
  • [36] Parameter Identification of Hysteresis Model with Improved Particle Swarm Optimization
    Ye, Meiying
    Wang, Xiaodong
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 415 - +
  • [37] Particle Swarm Optimization Based Load Model Parameter Identification
    Kim, Young-Gon
    Song, Hwachang
    Kim, Hong Rae
    Lee, Byongjun
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [38] Solving Parameter Identification Problem by Hybrid Particle Swarm Optimization
    Zahara, Erwie
    Liu, An
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 36 - +
  • [39] Self-adaptive chaotic local search particle swarm optimization for propylene explosion region parameter identification
    Liu, Shuting
    Gao, Xianwen
    He, Hangfeng
    Zhang, Shumei
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 1702 - 1707
  • [40] An Adaptive Chaotic Particle Swarm Optimization
    Liu Hongwu
    2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL II, 2009, : 324 - 327