A Particle Swarm Optimization Approach for Parameter Identification of Lorenz Chaotic System

被引:1
|
作者
Modarres, Hamidreza [1 ]
Alfi, Alireza [1 ]
机构
[1] Shahrood Univ Technol, Fac Elect & Robot Engn, Shahrood 3619995161, Iran
关键词
VARIABLE-STRUCTURE CONTROL; ADAPTIVE SYNCHRONIZATION; COMMUNICATION;
D O I
10.1109/IECON.2009.5415058
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An important problem in engineering is the identification of nonlinear systems, among them chaotic systems have received particular attention due to their complex and unpredictable behaviors. In this paper, a Particle Swarm Optimization (PSO) technique is applied for online parameter identification of Lorenz chaotic system. The difficulties of online implementation mainly come from the unavoidable computational time to find a solution. Due to this, first an Improved Particle Swarm Optimization (IPSO) is proposed to increase the convergence speed and accuracy of the Standard Particle Swarm Optimization (SPSO) to save tremendous computation time. Second. IPSO is also improved to detect and determine the variation of parameters. Finally, a numerical example is given to verify the effectiveness of the proposed method compared to Genetic Algorithm (GA) and SPSO.
引用
收藏
页码:3127 / +
页数:2
相关论文
共 50 条
  • [21] Adaptive synchronization and parameter identification for Lorenz chaotic system with stochastic perturbations
    Zhu Da-Wei
    Tu Li-Lan
    ACTA PHYSICA SINICA, 2013, 62 (05)
  • [22] Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
    Sun, Jun
    Zhao, Ji
    Wu, Xiaojun
    Fang, Wei
    Cai, Yujie
    Xu, Wenbo
    PHYSICS LETTERS A, 2010, 374 (28) : 2816 - 2822
  • [23] Parameter identification of permanent magnet synchronous motors using quasi-opposition-based particle swarm optimization and hybrid chaotic particle swarm optimization algorithms
    Ahandani, Morteza Alinia
    Abbasfam, Jafar
    Kharrati, Hamed
    APPLIED INTELLIGENCE, 2022, 52 (11) : 13082 - 13096
  • [24] Parameter identification of permanent magnet synchronous motors using quasi-opposition-based particle swarm optimization and hybrid chaotic particle swarm optimization algorithms
    Morteza Alinia Ahandani
    Jafar Abbasfam
    Hamed Kharrati
    Applied Intelligence, 2022, 52 : 13082 - 13096
  • [25] Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm
    Li Li-Xiang
    Peng Hai-Peng
    Yang Yi-Xian
    Wang Xiang-Dong
    ACTA PHYSICA SINICA, 2007, 56 (01) : 51 - 55
  • [26] Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm
    Li, Li-Xiang
    Peng, Hai-Peng
    Yang, Yi-Xian
    Wang, Xiang-Dong
    Wuli Xuebao/Acta Physica Sinica, 2007, 56 (01): : 51 - 55
  • [27] A PARAMETER IDENTIFICATION APPROACH OF A PEM FUEL CELL STACK USING PARTICLE SWARM OPTIMIZATION
    Salim, Reem I.
    Noura, Hassan
    Fardoun, Abbas
    PROCEEDINGS OF THE ASME 11TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2013, 2014,
  • [28] Fuzzy identification based on a chaotic particle swarm optimization approach applied to a nonlinear yo-yo motion system
    Coelho, Leandro dos Santos
    Herrera, Bruno Meirelles
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2007, 54 (06) : 3234 - 3245
  • [29] Parameter Identification of a Fractional Order Dynamical System Using Particle Swarm Optimization Technique
    Maiti, Deepyaman
    Janarthanan, R.
    Konar, Amit
    2008 IEEE REGION 10 CONFERENCE: TENCON 2008, VOLS 1-4, 2008, : 534 - +
  • [30] Particle swarm optimization for structural system identification
    Tang, H.
    Fukuda, M.
    Xue, S.
    STRUCTURAL HEALTH MONITORING 2007: QUANTIFICATION, VALIDATION, AND IMPLEMENTATION, VOLS 1 AND 2, 2007, : 483 - 492