Learning a Deep Convolutional Network for Light-Field Image Super-Resolution

被引:238
|
作者
Yoon, Youngjin [1 ]
Jeon, Hae-Gon [1 ]
Yoo, Donggeun [1 ]
Lee, Joon-Young [1 ]
Kweon, In So [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Robot & Comp Vis Lab, Daejeon, South Korea
关键词
D O I
10.1109/ICCVW.2015.17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Commercial Light-Field cameras provide spatial and angular information, but its limited resolution becomes an important problem in practical use. In this paper, we present a novel method for Light-Field image super-resolution (SR) via a deep convolutional neural network. Rather than the conventional optimization framework, we adopt a data-driven learning method to simultaneously up-sample the angular resolution as well as the spatial resolution of a Light-Field image. We first augment the spatial resolution of each sub-aperture image to enhance details by a spatial SR network. Then, novel views between the sub-aperture images are generated by an angular super-resolution network. These networks are trained independently but finally fine-tuned via end-to-end training. The proposed method shows the state-of-the-art performance on HCI synthetic dataset, and is further evaluated by challenging real-world applications including refocusing and depth map estimation.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 50 条
  • [31] Light Field Angular Super-Resolution using Convolutional Neural Network with Residual Network
    Kim, Dong-Myung
    Kang, Hyun-Soo
    Hong, Jang-Eui
    Suh, Jae-Won
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2019), 2019, : 595 - 597
  • [32] Stereo Super-resolution via a Deep Convolutional Network
    Li, Junxuan
    You, Shaodi
    Robles-Kelly, Antonio
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 858 - 864
  • [33] Image Fusion and Super-Resolution with Convolutional Neural Network
    Zhong, Jinying
    Yang, Bin
    Li, Yuehua
    Zhong, Fei
    Chen, Zhongze
    PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 78 - 88
  • [34] Pixel attention convolutional network for image super-resolution
    Wang, Xin
    Zhang, Shufen
    Lin, Yuanyuan
    Lyu, Yanxia
    Zhang, Jiale
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (11): : 8589 - 8599
  • [35] Deformable and residual convolutional network for image super-resolution
    Zhang, Yan
    Sun, Yemei
    Liu, Shudong
    APPLIED INTELLIGENCE, 2022, 52 (01) : 295 - 304
  • [36] Image Super-Resolution Based on Dense Convolutional Network
    Li, Jie
    Zhou, Yue
    PATTERN RECOGNITION AND COMPUTER VISION, PT II, 2018, 11257 : 134 - 145
  • [37] Light field image super-resolution based on dual learning and deep Fourier channel attention
    Ma, Jian
    Li, Zhipeng
    Cheng, Jin
    An, Ping
    Liang, Dong
    Huang, Linsheng
    OPTICS LETTERS, 2024, 49 (11) : 2886 - 2889
  • [38] Pixel attention convolutional network for image super-resolution
    Xin Wang
    Shufen Zhang
    Yuanyuan Lin
    Yanxia Lyu
    Jiale Zhang
    Neural Computing and Applications, 2023, 35 : 8589 - 8599
  • [39] Deformable and residual convolutional network for image super-resolution
    Yan Zhang
    Yemei Sun
    Shudong Liu
    Applied Intelligence, 2022, 52 : 295 - 304
  • [40] Densely convolutional attention network for image super-resolution
    Bai, Furui
    Lu, Wen
    Huang, Yuanfei
    Zha, Lin
    Yang, Jiachen
    NEUROCOMPUTING, 2019, 368 : 25 - 33