Pixel attention convolutional network for image super-resolution

被引:0
|
作者
Xin Wang
Shufen Zhang
Yuanyuan Lin
Yanxia Lyu
Jiale Zhang
机构
[1] Northeastern University,School of Computer Science and Engineering
[2] Northeastern University at Qinhuangdao,School of Computer and Communication Engineering
来源
关键词
Single-image super-resolution; Pixel attention mechanism; Channel attention; Spatial attention; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an image super-resolution method (SR) using a deeply-recursive convolutional network (DRCN). Single-image super-resolution reconstruction technology is to reconstruct fuzzy low-resolution images into clearer high-resolution images. It is a research hotspot in the field of computer vision and image processing. In recent years, the attention mechanism has been successfully applied in image super-resolution reconstruction. However, the existing methods use the channel attention mechanism and the spatial attention mechanism separately, or simply superimpose them, which cannot effectively unify the adjustment effects of both, and the performance is limited. This paper proposes a method that can merge channel attention and spatial attention into pixel attention, which achieves more precise adjustment of feature map information. The pixel attention convolutional neural network method built on this basis can improve the quality of image texture detail reconstruction. We have been tested on five widely used standard datasets, the experimental results show that the method is superior to most current representative reconstruction methods, especially in terms of high-definition picture texture restoration.
引用
下载
收藏
页码:8589 / 8599
页数:10
相关论文
共 50 条
  • [1] Pixel attention convolutional network for image super-resolution
    Wang, Xin
    Zhang, Shufen
    Lin, Yuanyuan
    Lyu, Yanxia
    Zhang, Jiale
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (11): : 8589 - 8599
  • [2] Densely convolutional attention network for image super-resolution
    Bai, Furui
    Lu, Wen
    Huang, Yuanfei
    Zha, Lin
    Yang, Jiachen
    NEUROCOMPUTING, 2019, 368 : 25 - 33
  • [3] Sub-Pixel Convolutional Neural Network for Image Super-Resolution Reconstruction
    Shao, Guifang
    Sun, Qiao
    Gao, Yunlong
    Zhu, Qingyuan
    Gao, Fengqiang
    Zhang, Junfa
    ELECTRONICS, 2023, 12 (17)
  • [4] Multi-scale convolutional attention network for lightweight image super-resolution
    Xie, Feng
    Lu, Pei
    Liu, Xiaoyong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
  • [5] Efficient sub-pixel convolutional neural network for terahertz image super-resolution
    Ruan, Haihang
    Tan, Zhiyong
    Chen, Liangtao
    Wan, Wenjain
    Cao, Juncheng
    OPTICS LETTERS, 2022, 47 (12) : 3115 - 3118
  • [6] Adaptive Attention Network for Image Super-resolution
    Chen Y.-M.
    Zhou D.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (08): : 1950 - 1960
  • [7] CT image super-resolution reconstruction via pixel-attention feedback network
    Shang, Jianrun
    Zhang, Guisheng
    Song, Wenhao
    Gao, Mingliang
    Li, Qilei
    Pan, Jinfeng
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 42 (01) : 21 - 33
  • [8] Image Fusion and Super-Resolution with Convolutional Neural Network
    Zhong, Jinying
    Yang, Bin
    Li, Yuehua
    Zhong, Fei
    Chen, Zhongze
    PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 78 - 88
  • [9] A DEEP CONVOLUTIONAL NETWORK FOR MEDICAL IMAGE SUPER-RESOLUTION
    Gao, Yunxing
    Li, Hengjian
    Dong, Jiwen
    Feng, Guang
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 5310 - 5315
  • [10] Deformable and residual convolutional network for image super-resolution
    Zhang, Yan
    Sun, Yemei
    Liu, Shudong
    APPLIED INTELLIGENCE, 2022, 52 (01) : 295 - 304