Pixel attention convolutional network for image super-resolution

被引:0
|
作者
Xin Wang
Shufen Zhang
Yuanyuan Lin
Yanxia Lyu
Jiale Zhang
机构
[1] Northeastern University,School of Computer Science and Engineering
[2] Northeastern University at Qinhuangdao,School of Computer and Communication Engineering
来源
关键词
Single-image super-resolution; Pixel attention mechanism; Channel attention; Spatial attention; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an image super-resolution method (SR) using a deeply-recursive convolutional network (DRCN). Single-image super-resolution reconstruction technology is to reconstruct fuzzy low-resolution images into clearer high-resolution images. It is a research hotspot in the field of computer vision and image processing. In recent years, the attention mechanism has been successfully applied in image super-resolution reconstruction. However, the existing methods use the channel attention mechanism and the spatial attention mechanism separately, or simply superimpose them, which cannot effectively unify the adjustment effects of both, and the performance is limited. This paper proposes a method that can merge channel attention and spatial attention into pixel attention, which achieves more precise adjustment of feature map information. The pixel attention convolutional neural network method built on this basis can improve the quality of image texture detail reconstruction. We have been tested on five widely used standard datasets, the experimental results show that the method is superior to most current representative reconstruction methods, especially in terms of high-definition picture texture restoration.
引用
下载
收藏
页码:8589 / 8599
页数:10
相关论文
共 50 条
  • [41] Convolutional Neural Network with Gradient Information for Image Super-Resolution
    Tang, Yinggan
    Zhu, Xiaoning
    Cui, Mingyong
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1714 - 1719
  • [42] Partial convolutional reparameterization network for lightweight image super-resolution
    Zhang, Long
    Wan, Yi
    Journal of Real-Time Image Processing, 2024, 21 (06)
  • [43] Image super-resolution using a dilated convolutional neural network
    Lin, Guimin
    Wu, Qingxiang
    Qiu, Lida
    Huang, Xixian
    NEUROCOMPUTING, 2018, 275 : 1219 - 1230
  • [44] Deep Differential Convolutional Network for Single Image Super-Resolution
    Liu, Peng
    Hong, Ying
    Liu, Yan
    IEEE ACCESS, 2019, 7 : 37555 - 37564
  • [45] Two-Stage Convolutional Network for Image Super-Resolution
    Hui, Zheng
    Wang, Xiumei
    Gao, Xinbo
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2670 - 2675
  • [46] ITERATIVE CONVOLUTIONAL NEURAL NETWORK FOR NOISY IMAGE SUPER-RESOLUTION
    Bao, Wenbo
    Zhang, Xiaoyun
    Yan, Shangpeng
    Gao, Zhiyong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4038 - 4042
  • [47] Image super-resolution with an enhanced group convolutional neural network
    Tian, Chunwei
    Yuan, Yixuan
    Zhang, Shichao
    Lin, Chia-Wen
    Zuo, Wangmeng
    Zhang, David
    NEURAL NETWORKS, 2022, 153 : 373 - 385
  • [48] IMAGE SUPER-RESOLUTION USING MULTI-RESOLUTION ATTENTION NETWORK
    Liu, Anqi
    Li, Sumei
    Chang, Yongli
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1610 - 1614
  • [49] Image Super-Resolution Using Residual Convolutional Neural Network
    Lee, Pei-Ying
    Tseng, Chien-Cheng
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [50] Single Image Super-Resolution Based on Convolutional Neural Network
    Shi Ziteng
    Wang Zhiren
    Wang Rui
    Ren Fuquan
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (12)