Learning a Deep Convolutional Network for Light-Field Image Super-Resolution

被引:238
|
作者
Yoon, Youngjin [1 ]
Jeon, Hae-Gon [1 ]
Yoo, Donggeun [1 ]
Lee, Joon-Young [1 ]
Kweon, In So [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Robot & Comp Vis Lab, Daejeon, South Korea
关键词
D O I
10.1109/ICCVW.2015.17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Commercial Light-Field cameras provide spatial and angular information, but its limited resolution becomes an important problem in practical use. In this paper, we present a novel method for Light-Field image super-resolution (SR) via a deep convolutional neural network. Rather than the conventional optimization framework, we adopt a data-driven learning method to simultaneously up-sample the angular resolution as well as the spatial resolution of a Light-Field image. We first augment the spatial resolution of each sub-aperture image to enhance details by a spatial SR network. Then, novel views between the sub-aperture images are generated by an angular super-resolution network. These networks are trained independently but finally fine-tuned via end-to-end training. The proposed method shows the state-of-the-art performance on HCI synthetic dataset, and is further evaluated by challenging real-world applications including refocusing and depth map estimation.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 50 条
  • [21] LARGE RECEPTIVE FIELD CONVOLUTIONAL NEURAL NETWORK FOR IMAGE SUPER-RESOLUTION
    Wang, Qiang
    Fan, Huijie
    Cong, Yang
    Tang, Yandong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 958 - 962
  • [22] Deep learning for image super-resolution
    Yang, Wenming
    Zhou, Fei
    Zhu, Rui
    Fukui, Kazuhiro
    Wang, Guijin
    Xue, Jing-Hao
    NEUROCOMPUTING, 2020, 398 (398) : 291 - 292
  • [23] DEEP NETWORK FOR IMAGE SUPER-RESOLUTION WITH A DICTIONARY LEARNING LAYER
    Liu, Yang
    Chen, Qingchao
    Wassell, Ian
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 967 - 971
  • [24] Image super-resolution algorithm based on deep learning network
    Chen, Jian
    Wang, Xiang
    Li, Qinrui
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2021, 128 : 180 - 181
  • [25] Fusion and Allocation Network for Light Field Image Super-Resolution
    Zhang, Wei
    Ke, Wei
    Wu, Zewei
    Zhang, Zeyu
    Sheng, Hao
    Xiong, Zhang
    MATHEMATICS, 2023, 11 (05)
  • [26] Image Super-Resolution Using Deep Convolutional Networks
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 295 - 307
  • [27] SHALLOW AND DEEP CONVOLUTIONAL NETWORKS FOR IMAGE SUPER-RESOLUTION
    Fan, Ru
    Li, Sumei
    Lei, Guoqing
    Yue, Guanghui
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1847 - 1851
  • [28] POLARIMETRIC SAR IMAGE SUPER-RESOLUTION VIA DEEP CONVOLUTIONAL NEURAL NETWORK
    Lin, Liupeng
    Li, Jie
    Yuan, Qiangqiang
    Shen, Huanfeng
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3205 - 3208
  • [29] Deep Super-Resolution Network for Single Image Super-Resolution with Realistic Degradations
    Umer, Rao Muhammad
    Foresti, Gian Luca
    Micheloni, Christian
    ICDSC 2019: 13TH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2019,
  • [30] Low-light-level image super-resolution reconstruction via deep learning network
    Wang, Bowen
    Zou, Yan
    Li, Yuhai
    Lu, Wenlin
    Zuo, Chao
    AOPC 2021: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2021, 12065