In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3)

被引:108
|
作者
Schimanke, G [1 ]
Martin, M [1 ]
机构
[1] Darmstadt Univ Technol, Inst Chem Phys, D-64287 Darmstadt, Germany
关键词
in situ XRD; nanocrystals; XANES; TEM; kinetics; maghemite; hematite; iron;
D O I
10.1016/S0167-2738(00)00593-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocrystalline iron oxide was produced by inert gas condensation (IGC). The phase and crystal size analysis were done by X-ray powder diffraction (XRD), X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM). All three methods show that the only oxide that was formed was maghemite. The crystal sizes vary for different samples from 9 nm to 16 nm. The kinetics of the phase transition from maghemite to hematite was observed by in situ XRD measurements at temperatures around 300 degreesC. It is possible to describe the transition by first order kinetics with an activation energy which increases with increasing crystal size. The sizes of the produced hematite crystals were above 35 nm, but growing of the maghemite crystals was not observed. These results can be explained qualitatively under the aspect of the Gibbs energies. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1235 / 1240
页数:6
相关论文
共 50 条
  • [41] Rietveld analysis and Mossbauer spectroscopy studies of nanocrystalline hematite α-Fe2O3
    Lemine, O. M.
    Sajieddine, M.
    Bououdina, M.
    Msalam, R.
    Mufti, S.
    Alyamani, A.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 502 (02) : 279 - 282
  • [42] Synthesis and physical characterization of γ-Fe2O3 and (α+γ)-Fe2O3 nanoparticles
    P. Bhavani
    N. Ramamanohar Reddy
    I. Venkata Subba Reddy
    Journal of the Korean Physical Society, 2017, 70 : 150 - 154
  • [43] Electronic Structure of Excitons in Hematite Fe2O3
    Rassouli, Lili
    Dupuis, Michel
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (02): : 743 - 758
  • [44] Differences in Electrophysical and Gas Sensing Properties of Flame Spray Synthesized Fe2O3(γ-Fe2O3 and α-Fe2O3)
    Flak, Dorota
    Braun, Artur
    Michalow, Katarzyna A.
    Wyrwa, Jan
    Parlinska-Wojtan, Magdalena
    Graule, Thomas
    Rekas, Mieczyslaw
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (08) : 6401 - 6411
  • [45] Hematite (α-Fe2O3) Photoanodes for the Photooxidation of Water
    Herrmann-Geppert, I.
    Bogdanoff, P.
    Hepperle, L.
    Fiechter, S.
    ELECTROCHEMICAL SYNTHESIS OF FUELS 1, 2012, 41 (33): : 201 - 212
  • [46] Electron hopping mechanism in hematite (α-Fe2O3)
    Papaioannou, JC
    Patermarakis, GS
    Karayianni, HS
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (05) : 839 - 844
  • [47] Preparation, phase analysis and electrochemistry of magnetite (Fe3O4) and maghemite (γ-Fe2O3) nanoparticles
    Nnadozie, Ebenezer C.
    Ajibade, Peter A.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (12):
  • [48] Formation of ε-Fe2O3 phase by the heat treatment of α-Fe2O3/SiO2 nanocomposite
    Tadic, Marin
    Spasojevic, Vojislav
    Kusigerski, Vladan
    Markovic, Dragana
    Remskar, Maja
    SCRIPTA MATERIALIA, 2008, 58 (08) : 703 - 706
  • [49] Atomic Structure of the Fe3O4/Fe2O3 Interface During Phase Transition from Hematite to Magnetite
    Zhang, Xiaoben
    Jin, Chuanchuan
    Han, Shaobo
    Guo, Peiyao
    Zhou, Yan
    Liu, Wei
    Shen, Wenjie
    INORGANIC CHEMISTRY, 2023, 62 (30) : 12111 - 12118
  • [50] PIXE & XRD analysis of nanocrystals of Fe, Ni and Fe2O3
    Chanda, S. C.
    Manna, A.
    Vijayan, V.
    Nayak, Pranaba K.
    Ashok, M.
    Acharya, H. N.
    MATERIALS LETTERS, 2007, 61 (28) : 5059 - 5062