In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3)

被引:108
|
作者
Schimanke, G [1 ]
Martin, M [1 ]
机构
[1] Darmstadt Univ Technol, Inst Chem Phys, D-64287 Darmstadt, Germany
关键词
in situ XRD; nanocrystals; XANES; TEM; kinetics; maghemite; hematite; iron;
D O I
10.1016/S0167-2738(00)00593-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocrystalline iron oxide was produced by inert gas condensation (IGC). The phase and crystal size analysis were done by X-ray powder diffraction (XRD), X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM). All three methods show that the only oxide that was formed was maghemite. The crystal sizes vary for different samples from 9 nm to 16 nm. The kinetics of the phase transition from maghemite to hematite was observed by in situ XRD measurements at temperatures around 300 degreesC. It is possible to describe the transition by first order kinetics with an activation energy which increases with increasing crystal size. The sizes of the produced hematite crystals were above 35 nm, but growing of the maghemite crystals was not observed. These results can be explained qualitatively under the aspect of the Gibbs energies. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1235 / 1240
页数:6
相关论文
共 50 条
  • [31] Phase transition behavior in Fe2O3 nanofibers
    Han, Chang
    Shi, Jing
    Yang, Sen
    Wang, Yu
    Xie, Kun
    Song, Xiaoping
    Liu, Hongzhong
    Cai, Anjiang
    Yun, Sining
    APPLIED SURFACE SCIENCE, 2020, 507
  • [32] Structural phase transition in nanostructured γ-Fe2O3
    YE Xisheng
    2. Central Laboratory
    3. Institute of Solid State Physics
    Science Bulletin, 1997, (11) : 894 - 897
  • [33] Thermal stability of nanocrystalline ε-Fe2O3
    Brazda, Petr
    Vecernikova, Eva
    Plizingrova, Eva
    Lancok, Adriana
    Niznansky, Daniel
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 117 (01) : 85 - 91
  • [34] Thermal stability of nanocrystalline ε-Fe2O3
    Petr Brázda
    Eva Večerníková
    Eva Pližingrová
    Adriana Lančok
    Daniel Nižňanský
    Journal of Thermal Analysis and Calorimetry, 2014, 117 : 85 - 91
  • [35] Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application
    Saritas, Sevda
    Kundakci, Mutlu
    Coban, Omer
    Tuzemen, Sebahattin
    Yildirim, Muhammet
    PHYSICA B-CONDENSED MATTER, 2018, 541 : 14 - 18
  • [36] Facile approach to suppress γ-Fe2O3 to α-Fe2O3 phase transition beyond 600°C in Fe3O4 nanoparticles
    Pati, S. S.
    Herojit Singh, L.
    Mantilla Ochoa, J. C.
    Guimaraesa, E. M.
    Sales, M. J. A.
    Coaquira, J. A. H.
    Oliveira, A. C.
    Garg, V. K.
    MATERIALS RESEARCH EXPRESS, 2015, 2 (04):
  • [37] Doping γ-Fe2O3 nanoparticles with Mn(III) suppresses the transition to the α-Fe2O3 structure
    Lai, JR
    Shafi, KVPM
    Loos, K
    Ulman, A
    Lee, Y
    Vogt, T
    Estournès, C
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (38) : 11470 - 11471
  • [38] Doping γ-Fe2O3 nanoparticles with Mn(III) suppresses the transition to the α-Fe2O3 structure
    Lai, Jriuan
    Shafi, Kurikka V. P. M.
    Loos, Katja
    Ulman, Abraham
    Lee, Yongjae
    Vogt, Thomas
    Estournes, Claude
    Journal of the American Chemical Society, 2003, 125 (38): : 11470 - 11471
  • [39] Comparative study of the mechanochemical activation of magnetite (Fe3O4) and maghemite (γ-Fe2O3)
    Mitov, I.
    Cherkezova-Zheleva, Z.
    Mitrov, V.
    1997, Akademie Verlag GmbH, Berlin, Germany (161):
  • [40] The reducibility of Fe2O3 and supported Ru/Fe2O3 catalysts
    Józwiak, WK
    Maniecki, TP
    Gebauer, D
    PRZEMYSL CHEMICZNY, 2003, 82 (03): : 134 - 137