Blending type approximation by modified Bernstein operators

被引:2
|
作者
Acu, Ana Maria [1 ]
Kajla, Arun [2 ]
机构
[1] Lucian Blaga Univ Sibiu, Dept Math & Informat, Str Dr I Ratiu 5-7, Sibiu 550012, Romania
[2] Cent Univ Haryana, Sch Basic Sci, Mahendergarh 123031, Haryana, India
关键词
Bernstein operators; Global approximation; Positive approximation;
D O I
10.1007/s43036-021-00172-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present manuscript, we define the generalized Bernstein operators which reproduce linear functions. First, we compute an approximation theorem using Bohman-Korovkin's criterion and obtain the estimate of the rate of approximation by using modulus of smoothness, Lipschitz class and Voronovskaya formula for these operators. The rate of approximation for differentiable functions whose derivatives are of bounded variation is also established. Finally, the theoretical results are demonstrated by using MAPLE software.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Blending type approximation by modified Bernstein operators
    Ana Maria Acu
    Arun Kajla
    [J]. Advances in Operator Theory, 2022, 7
  • [2] Blending type approximation by bivariate generalized Bernstein type operators
    Baxhaku, Behar
    Kajla, Arun
    [J]. QUAESTIONES MATHEMATICAE, 2020, 43 (10) : 1449 - 1465
  • [3] BLENDING TYPE APPROXIMATION BY BERNSTEIN-DURRMEYER TYPE OPERATORS
    Kajla, Arun
    Goyal, Meenu
    [J]. MATEMATICKI VESNIK, 2018, 70 (01): : 40 - 54
  • [4] Blending Type Approximation by GBS Operators of Generalized Bernstein–Durrmeyer Type
    Arun Kajla
    Dan Miclăuş
    [J]. Results in Mathematics, 2018, 73
  • [5] BLENDING TYPE APPROXIMATION BY GENERALIZED BERNSTEIN-DURRMEYER TYPE OPERATORS
    Kajla, Arun
    Acar, Tuncer
    [J]. MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 319 - 336
  • [6] Blending Type Approximation by GBS Operators of Generalized Bernstein-Durrmeyer Type
    Kajla, Arun
    Miclaus, Dan
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (01)
  • [7] Approximation of Functions by Generalized Parametric Blending-Type Bernstein Operators
    Aktuglu, Huseyin
    Zaheriani, S. Yashar
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (05): : 1495 - 1504
  • [8] Approximation of Functions by Generalized Parametric Blending-Type Bernstein Operators
    Hüseyin Aktuğlu
    S. Yashar Zaheriani
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 1495 - 1504
  • [9] APPROXIMATION PROPERTIES OF GENERALIZED BLENDING TYPE LOTOTSKY-BERNSTEIN OPERATORS
    Aktuglu, Huseyin
    Gezer, Halil
    Baytunc, Erdem
    Atamert, Mehmet Salih
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 707 - 728
  • [10] Approximation Properties of the Blending-Type Bernstein-Durrmeyer Operators
    Liu, Yu-Jie
    Cheng, Wen-Tao
    Zhang, Wen-Hui
    Ye, Pei-Xin
    [J]. AXIOMS, 2023, 12 (01)