Blending type approximation by modified Bernstein operators

被引:2
|
作者
Acu, Ana Maria [1 ]
Kajla, Arun [2 ]
机构
[1] Lucian Blaga Univ Sibiu, Dept Math & Informat, Str Dr I Ratiu 5-7, Sibiu 550012, Romania
[2] Cent Univ Haryana, Sch Basic Sci, Mahendergarh 123031, Haryana, India
关键词
Bernstein operators; Global approximation; Positive approximation;
D O I
10.1007/s43036-021-00172-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present manuscript, we define the generalized Bernstein operators which reproduce linear functions. First, we compute an approximation theorem using Bohman-Korovkin's criterion and obtain the estimate of the rate of approximation by using modulus of smoothness, Lipschitz class and Voronovskaya formula for these operators. The rate of approximation for differentiable functions whose derivatives are of bounded variation is also established. Finally, the theoretical results are demonstrated by using MAPLE software.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Blending-type approximation by generalized Lupaş-type operators
    Meenu Goyal
    Arun Kajla
    [J]. Boletín de la Sociedad Matemática Mexicana, 2019, 25 : 97 - 115
  • [42] Approximation properties of Bernstein-Durrmeyer type operators
    Cardenas-Morales, D.
    Garrancho, P.
    Rasa, I.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1 - 8
  • [43] Approximation properties of (p, q)-Bernstein type operators
    Finta, Zoltan
    [J]. ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (02) : 222 - 232
  • [44] Bernstein type operators with a better approximation for some functions
    Birou, Marius Mihai
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9493 - 9499
  • [45] Approximation by Stancu-Chlodowsky type λ-Bernstein operators
    Mursaleen, M.
    Al-Abied, A. A. H.
    Salman, M. A.
    [J]. JOURNAL OF APPLIED ANALYSIS, 2020, 26 (01) : 97 - 110
  • [46] Statistical approximation properties of Stancu type λ-Bernstein operators
    Wang, Peng-Hui
    Cai, Qing-Bo
    [J]. PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY (ICEICT 2019), 2019, : 178 - 182
  • [47] Pointwise approximation by Bernstein type operators in mobile interval
    Jung, Hee Sun
    Deo, Naokant
    Dhamija, Minakshi
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 683 - 694
  • [48] Pointwise approximation for a type of Bernstein-Durrmeyer operators
    Liu, Guofen
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [49] Degree of Approximation for Bivariate Generalized Bernstein Type Operators
    Tuncer Acar
    Arun Kajla
    [J]. Results in Mathematics, 2018, 73
  • [50] Approximation Properties by Bernstein-Durrmeyer Type Operators
    Gupta, Vijay
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (02) : 363 - 374