BLENDING TYPE APPROXIMATION BY GENERALIZED BERNSTEIN-DURRMEYER TYPE OPERATORS

被引:48
|
作者
Kajla, Arun [1 ]
Acar, Tuncer [2 ]
机构
[1] Cent Univ Haryana, Dept Math, Chandigarh 123031, Haryana, India
[2] Selcuk Univ, Fac Sci, Dept Math, TR-42003 Selcuklu, Konya, Turkey
关键词
local approximation; global approximation; asymptotic formula; bounded variation; SZASZ-TYPE OPERATORS; HYBRID OPERATORS;
D O I
10.18514/MMN.2018.2216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we construct a Durrmeyer modification of the operators introduced by Chen et al. in [10] based on a non-negative real parameter. We establish local approximation, global approximation, Voronovskaja type asymptotic theorem. The rate of convergence for differentiable functions whose derivatives are of bounded variation is also obtained.
引用
收藏
页码:319 / 336
页数:18
相关论文
共 50 条
  • [1] Blending Type Approximation by GBS Operators of Generalized Bernstein-Durrmeyer Type
    Kajla, Arun
    Miclaus, Dan
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (01)
  • [2] BLENDING TYPE APPROXIMATION BY BERNSTEIN-DURRMEYER TYPE OPERATORS
    Kajla, Arun
    Goyal, Meenu
    [J]. MATEMATICKI VESNIK, 2018, 70 (01): : 40 - 54
  • [3] Generalized Bernstein-Durrmeyer operators of blending type
    Kajla, Arun
    Goyal, Meenu
    [J]. AFRIKA MATEMATIKA, 2019, 30 (7-8) : 1103 - 1118
  • [4] Approximation Properties of the Blending-Type Bernstein-Durrmeyer Operators
    Liu, Yu-Jie
    Cheng, Wen-Tao
    Zhang, Wen-Hui
    Ye, Pei-Xin
    [J]. AXIOMS, 2023, 12 (01)
  • [5] Blending Type Approximation by GBS Operators of Generalized Bernstein–Durrmeyer Type
    Arun Kajla
    Dan Miclăuş
    [J]. Results in Mathematics, 2018, 73
  • [6] Approximation properties of Bernstein-Durrmeyer type operators
    Cardenas-Morales, D.
    Garrancho, P.
    Rasa, I.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1 - 8
  • [7] Pointwise approximation for a type of Bernstein-Durrmeyer operators
    Liu, Guofen
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [8] Approximation Properties by Bernstein-Durrmeyer Type Operators
    Gupta, Vijay
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (02) : 363 - 374
  • [9] Pointwise approximation for a type of Bernstein-Durrmeyer operators
    Guofen Liu
    [J]. Journal of Inequalities and Applications, 2014
  • [10] Generalized Bernstein–Durrmeyer operators of blending type
    Arun Kajla
    Meenu Goyal
    [J]. Afrika Matematika, 2019, 30 : 1103 - 1118