BLENDING TYPE APPROXIMATION BY BERNSTEIN-DURRMEYER TYPE OPERATORS

被引:0
|
作者
Kajla, Arun [1 ]
Goyal, Meenu [2 ]
机构
[1] Cent Univ Haryana, Dept Math, Pali 123031, Haryana, India
[2] DIT Univ, Dept Math, Dehra Dun 248001, India
来源
MATEMATICKI VESNIK | 2018年 / 70卷 / 01期
关键词
Stancu operators; global approximation; rate of convergence; modulus of continuity; Steklov mean;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we introduce the Durrmeyer variant of Stancu operators that preserve the constant functions depending on non-negative parameters. We give a global approximation theorem in terms of the Ditzian-Totik modulus of smoothness, a Voronovskaja type theorem and a local approximation theorem by means of second order modulus of continuity. Also, we obtain the rate of approximation for absolutely continuous functions having a derivative equivalent with a function of bounded variation. Lastly, we compare the rate of approximation of the Stancu-Durrmeyer operators and genuine Bernstein-Durrmeyer operators to certain function by illustrative graphics with the help of the Mathematica software.
引用
收藏
页码:40 / 54
页数:15
相关论文
共 50 条
  • [1] BLENDING TYPE APPROXIMATION BY GENERALIZED BERNSTEIN-DURRMEYER TYPE OPERATORS
    Kajla, Arun
    Acar, Tuncer
    [J]. MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 319 - 336
  • [2] Blending Type Approximation by GBS Operators of Generalized Bernstein-Durrmeyer Type
    Kajla, Arun
    Miclaus, Dan
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (01)
  • [3] Approximation Properties of the Blending-Type Bernstein-Durrmeyer Operators
    Liu, Yu-Jie
    Cheng, Wen-Tao
    Zhang, Wen-Hui
    Ye, Pei-Xin
    [J]. AXIOMS, 2023, 12 (01)
  • [4] Generalized Bernstein-Durrmeyer operators of blending type
    Kajla, Arun
    Goyal, Meenu
    [J]. AFRIKA MATEMATIKA, 2019, 30 (7-8) : 1103 - 1118
  • [5] Approximation properties of Bernstein-Durrmeyer type operators
    Cardenas-Morales, D.
    Garrancho, P.
    Rasa, I.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1 - 8
  • [6] Pointwise approximation for a type of Bernstein-Durrmeyer operators
    Liu, Guofen
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [7] Approximation Properties by Bernstein-Durrmeyer Type Operators
    Gupta, Vijay
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (02) : 363 - 374
  • [8] Pointwise approximation for a type of Bernstein-Durrmeyer operators
    Guofen Liu
    [J]. Journal of Inequalities and Applications, 2014
  • [9] ON APPROXIMATION PROPERTIES OF A NEW TYPE OF BERNSTEIN-DURRMEYER OPERATORS
    Acar, Tuncer
    Aral, Ali
    Gupta, Vijay
    [J]. MATHEMATICA SLOVACA, 2015, 65 (05) : 1107 - 1122
  • [10] APPROXIMATION OF FUNCTIONS BY GENUINE BERNSTEIN-DURRMEYER TYPE OPERATORS
    Acar, Tuncer
    Acu, Ana Maria
    Manav, Nesibe
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 975 - 987