Generalized Bernstein-Durrmeyer operators of blending type

被引:3
|
作者
Kajla, Arun [1 ]
Goyal, Meenu [2 ]
机构
[1] Cent Univ Haryana, Dept Math, Mahendragarh 123031, Haryana, India
[2] Thapar Univ, Sch Math, Patiala, Punjab, India
关键词
Positive approximation; Global approximation; Rate of convergence; Modulus of continuity; Steklov mean; APPROXIMATION;
D O I
10.1007/s13370-019-00705-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we present the Durrmeyer variant of generalized Bernstein operators that preserve the constant functions involving a non-negative parameter rho. We derive the approximation behaviour of these operators including a global approximation theorem via Ditzian-Totik modulus of continuity and the order of convergence for the Lipschitz type space. Furthermore, we study a Voronovskaja type asymptotic formula, local approximation theorem by means of second order modulus of smoothness and the rate of approximation for absolutely continuous functions having a derivative equivalent to a function of bounded variation. Lastly, we illustrate the convergence of these operators for certain functions using Maple software.
引用
收藏
页码:1103 / 1118
页数:16
相关论文
共 50 条
  • [1] BLENDING TYPE APPROXIMATION BY GENERALIZED BERNSTEIN-DURRMEYER TYPE OPERATORS
    Kajla, Arun
    Acar, Tuncer
    [J]. MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 319 - 336
  • [2] Blending Type Approximation by GBS Operators of Generalized Bernstein-Durrmeyer Type
    Kajla, Arun
    Miclaus, Dan
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (01)
  • [3] BLENDING TYPE APPROXIMATION BY BERNSTEIN-DURRMEYER TYPE OPERATORS
    Kajla, Arun
    Goyal, Meenu
    [J]. MATEMATICKI VESNIK, 2018, 70 (01): : 40 - 54
  • [4] Bezier variant of Bernstein-Durrmeyer blending-type operators
    Prakash, Chandra
    Deo, Naokant
    Verma, D. K.
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (06)
  • [5] Generalized Bernstein–Durrmeyer operators of blending type
    Arun Kajla
    Meenu Goyal
    [J]. Afrika Matematika, 2019, 30 : 1103 - 1118
  • [6] Approximation Properties of the Blending-Type Bernstein-Durrmeyer Operators
    Liu, Yu-Jie
    Cheng, Wen-Tao
    Zhang, Wen-Hui
    Ye, Pei-Xin
    [J]. AXIOMS, 2023, 12 (01)
  • [7] Simultaneous approximation on generalized Bernstein-Durrmeyer operators
    Deo N.
    Bhardwaj N.
    Singh S.P.
    [J]. Afrika Matematika, 2013, 24 (1) : 77 - 82
  • [8] BERNSTEIN-DURRMEYER OPERATORS
    ADELL, JA
    DELACAL, J
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (3-6) : 1 - 14
  • [9] Modified Bernstein-Durrmeyer Type Operators
    Kajla, Arun
    Miclaus, Dan
    [J]. MATHEMATICS, 2022, 10 (11)
  • [10] Bezier variant of the Bernstein-Durrmeyer type operators
    Acar, Tuncer
    Agrawal, P. N.
    Neer, Trapti
    [J]. RESULTS IN MATHEMATICS, 2017, 72 (03) : 1341 - 1358