Simple and honest confidence intervals in nonparametric regression

被引:28
|
作者
Armstrong, Timothy B. [1 ]
Kolesar, Michal [2 ]
机构
[1] Yale Univ, Dept Econ, New Haven, CT 06520 USA
[2] Princeton Univ, Dept Econ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Confidence intervals; regression discontinuity; nonparametric regression; C14; C21; MINIMAX LINEAR-ESTIMATION; ASYMPTOTIC EQUIVALENCE; INFERENCE; BANDS;
D O I
10.3982/QE1199
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider the problem of constructing honest confidence intervals (CIs) for a scalar parameter of interest, such as the regression discontinuity parameter, in nonparametric regression based on kernel or local polynomial estimators. To ensure that our CIs are honest, we use critical values that take into account the possible bias of the estimator upon which the CIs are based. We show that this approach leads to CIs that are more efficient than conventional CIs that achieve coverage by undersmoothing or subtracting an estimate of the bias. We give sharp efficiency bounds of using different kernels, and derive the optimal bandwidth for constructing honest CIs. We show that using the bandwidth that minimizes the maximum mean-squared error results in CIs that are nearly efficient and that in this case, the critical value depends only on the rate of convergence. For the common case in which the rate of convergence is n(-2/5), the appropriate critical value for 95% CIs is 2.18, rather than the usual 1.96 critical value. We illustrate our results in a Monte Carlo analysis and an empirical application.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 50 条
  • [31] Nonparametric likelihood ratio confidence intervals
    Lee, SMS
    Young, GA
    [J]. BIOMETRIKA, 1999, 86 (01) : 107 - 118
  • [32] NONPARAMETRIC CONFIDENCE INTERVALS FOR A SCALE PARAMETER
    NOETHER, GE
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02): : 640 - &
  • [33] CONFIDENCE BANDS IN NONPARAMETRIC REGRESSION
    EUBANK, RL
    SPECKMAN, PL
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (424) : 1287 - 1301
  • [34] Confidence Intervals for the Response Mean of a Simple Regression Model Following Pretests
    Niwitpong, Sa-aat
    Panchatree, Nantaya
    [J]. THAILAND STATISTICIAN, 2011, 9 (01): : 21 - 35
  • [35] Asymmetric confidence bands for simple linear regression over bounded intervals
    Piegorsch, WW
    West, RW
    Al-Saidy, OM
    Bradley, KD
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2000, 34 (02) : 193 - 217
  • [36] Robust and honest confidence intervals for causal effects.
    Robins, J.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2006, 163 (11) : S222 - S222
  • [37] Confidence intervals in monotone regression
    Groeneboom, Piet
    Jongbloed, Geurt
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2024,
  • [38] Nonparametric asymptotic confidence intervals for extreme quantiles
    Gardes, Laurent
    Maistre, Samuel
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (02) : 825 - 841
  • [39] Nonparametric Differentially Private Confidence Intervals for the Median
    Drechsler, Joerg
    Globus-Harris, Ira
    Mcmillan, Audra
    Sarathy, Jayshree
    Smith, Adam
    [J]. JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2022, 10 (03) : 804 - 829
  • [40] Best exact nonparametric confidence intervals for quantiles
    Zielinski, R
    Zielinski, W
    [J]. STATISTICS, 2005, 39 (01) : 67 - 71