Detecting non-Abelian geometric phases with three-level Λ systems

被引:3
|
作者
Du, Yan-Xiong [1 ]
Xue, Zheng-Yuan [1 ]
Zhang, Xin-Ding [1 ]
Yan, Hui [1 ]
机构
[1] S China Normal Univ, Sch Phys & Telecommun Engn, Lab Quantum Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 03期
关键词
GAUGE STRUCTURE; STATES;
D O I
10.1103/PhysRevA.84.034103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that a non-Abelian gauge potential in two nearly degenerated dressed states may be induced by two laser beams interacting with a three-level Lambda atomic system. We demonstrate that the populations of the atomic states at the end of a composed path formed by two closed loops are dependent on the order of those two loops, showing an unambiguous signature of the non-Abelian geometric phase. Through numerical calculations, we show that the non-Abelian feature of the geometric phases can be tested under realistic conditions.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Geometric phase of mixed states for three-level open systems
    Jiang, Yanyan
    Ji, Y. H.
    Xu, Hualan
    Hu, Li-yun
    Wang, Z. S.
    Chen, Z. Q.
    Guo, L. P.
    [J]. PHYSICAL REVIEW A, 2010, 82 (06):
  • [42] Model of chiral spin liquids with Abelian and non-Abelian topological phases
    Chen, Jyong-Hao
    Mudry, Christopher
    Chamon, Claudio
    Tsvelik, A. M.
    [J]. PHYSICAL REVIEW B, 2017, 96 (22)
  • [43] Non-Abelian geometric quantum memory with an atomic ensemble
    Li, Y
    Zhang, P
    Zanardi, P
    Sun, CP
    [J]. PHYSICAL REVIEW A, 2004, 70 (03): : 032330 - 1
  • [44] Noncyclic geometric phase and its non-Abelian generalization
    Mostafazadeh, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (46): : 8157 - 8171
  • [45] Non-Abelian phases from quantum Zeno dynamics
    Burgarth, Daniel
    Facchi, Paolo
    Giovannetti, Vittorio
    Nakazato, Hiromichi
    Pascazio, Saverio
    Yuasa, Kazuya
    [J]. PHYSICAL REVIEW A, 2013, 88 (04):
  • [46] Topological insulating phases of non-Abelian anyonic chains
    DeGottardi, Wade
    [J]. PHYSICAL REVIEW B, 2014, 90 (07):
  • [47] NON-ABELIAN GEOMETRIC PHASE AND GENERALIZED INVARIANT METHOD
    KWON, O
    AHN, C
    KIM, Y
    [J]. PHYSICAL REVIEW A, 1992, 46 (09): : 5354 - 5357
  • [48] NON-ABELIAN GEOMETRIC EFFECT IN QUANTUM ADIABATIC TRANSITIONS
    JOYE, A
    PFISTER, CE
    [J]. PHYSICAL REVIEW A, 1993, 48 (04): : 2598 - 2608
  • [49] Non-Abelian fermionization and the landscape of quantum Hall phases
    Goldman, Hart
    Sohal, Ramanjit
    Fradkin, Eduardo
    [J]. PHYSICAL REVIEW B, 2020, 102 (19)
  • [50] Maximally non-abelian Toda systems
    Razumov, AV
    Saveliev, MV
    [J]. NUCLEAR PHYSICS B, 1997, 494 (03) : 657 - 686