Pade approximants of the Mittag-Leffler functions

被引:21
|
作者
Starovoitov, A. P. [1 ]
Starovoitova, N. A. [1 ]
机构
[1] Gomel State Univ, Gomel, BELARUS
关键词
D O I
10.1070/SM2007v198n07ABEH003871
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for m <= n the Pade approximants {pi(n,m)(center dot;F-gamma)}, which locally deliver the best rational approximations to the Mittag-Leffler functions F-gamma, approximate the F-gamma as n -> infinity uniformly on the compact set D = {z : |z| <= 1} at a rate asymptotically equal to the best possible one. In particular, analogues of the well-known results of Braess and Trefethen relating to the approximation of exp z are proved for the Mittag-Leffler functions.
引用
收藏
页码:1011 / 1023
页数:13
相关论文
共 50 条
  • [41] On partial sums of normalized Mittag-Leffler functions
    Raducanu, Dorina
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2017, 25 (02): : 123 - 133
  • [42] The role of Mittag-Leffler functions in anomalous relaxation
    Crothers, DSF
    Holland, D
    Kalmykov, YP
    Coffey, W
    JOURNAL OF MOLECULAR LIQUIDS, 2004, 114 (1-3) : 27 - 34
  • [43] Overconvergence of series in generalized mittag-leffler functions
    Paneva-Konovska J.
    Fractional Calculus and Applied Analysis, 2017, 20 (2) : 506 - 520
  • [44] The Integral Mittag-Leffler, Whittaker and Wright Functions
    Apelblat, Alexander
    Gonzalez-Santander, Juan Luis
    MATHEMATICS, 2021, 9 (24)
  • [45] RADII PROBLEMS FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS
    Prajapati, Anuja
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (04) : 1031 - 1052
  • [46] Fractional derivatives of the generalized Mittag-Leffler functions
    Denghao Pang
    Wei Jiang
    Azmat U. K. Niazi
    Advances in Difference Equations, 2018
  • [47] Fractional derivatives of the generalized Mittag-Leffler functions
    Pang, Denghao
    Jiang, Wei
    Niazi, Azmat U. K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [48] Certain geometric properties of Mittag-Leffler functions
    Noreen, Saddaf
    Raza, Mohsan
    Malik, Sarfraz Nawaz
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [49] GLOBAL PADE APPROXIMATIONS OF THE GENERALIZED MITTAG-LEFFLER FUNCTION AND ITS INVERSE
    Zeng, Caibin
    Chen, YangQuan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (06) : 1492 - 1506
  • [50] On the Mittag-Leffler distributions
    Lin, GD
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 74 (01) : 1 - 9