Pade approximants of the Mittag-Leffler functions

被引:21
|
作者
Starovoitov, A. P. [1 ]
Starovoitova, N. A. [1 ]
机构
[1] Gomel State Univ, Gomel, BELARUS
关键词
D O I
10.1070/SM2007v198n07ABEH003871
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for m <= n the Pade approximants {pi(n,m)(center dot;F-gamma)}, which locally deliver the best rational approximations to the Mittag-Leffler functions F-gamma, approximate the F-gamma as n -> infinity uniformly on the compact set D = {z : |z| <= 1} at a rate asymptotically equal to the best possible one. In particular, analogues of the well-known results of Braess and Trefethen relating to the approximation of exp z are proved for the Mittag-Leffler functions.
引用
收藏
页码:1011 / 1023
页数:13
相关论文
共 50 条
  • [31] Overconvergence of series in generalized mittag-leffler functions
    Paneva-Konovska, Jordanka
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (02) : 506 - 520
  • [32] Analog filters based on the Mittag-Leffler functions
    Allagui, Anis
    Elwakil, Ahmed S.
    Nako, Julia
    Psychalinos, Costas
    SIGNAL PROCESSING, 2025, 233
  • [33] On the fractional calculus of multivariate Mittag-Leffler functions
    Ozarslan, Mehmet Ali
    Fernandez, Arran
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (02) : 247 - 273
  • [34] On properties of the generalized Mittag-Leffler type functions
    Gorenflo, R
    Kilbas, AA
    Rogozin, SV
    DOKLADY AKADEMII NAUK BELARUSI, 1998, 42 (05): : 34 - 39
  • [35] Certain geometric properties of the Mittag-Leffler functions
    Bansal, D.
    Prajapat, J. K.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (03) : 338 - 350
  • [36] On the real zeros of functions of Mittag-Leffler type
    A. V. Pskhu
    Mathematical Notes, 2005, 77 : 546 - 552
  • [37] Certain geometric properties of Mittag-Leffler functions
    Saddaf Noreen
    Mohsan Raza
    Sarfraz Nawaz Malik
    Journal of Inequalities and Applications, 2019
  • [38] ON GEOMETRIC PROPERTIES OF THE MITTAG-LEFFLER AND WRIGHT FUNCTIONS
    Das, Sourav
    Mehrez, Khaled
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (04) : 949 - 965
  • [39] On the real zeros of functions of Mittag-Leffler type
    Pskhu, AV
    MATHEMATICAL NOTES, 2005, 77 (3-4) : 546 - 552
  • [40] A note on asymptotic behaviour of Mittag-Leffler functions
    Wang, JinRong
    Zhou, Yong
    O'Regan, D.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (02) : 81 - 94