Pade approximants of the Mittag-Leffler functions

被引:21
|
作者
Starovoitov, A. P. [1 ]
Starovoitova, N. A. [1 ]
机构
[1] Gomel State Univ, Gomel, BELARUS
关键词
D O I
10.1070/SM2007v198n07ABEH003871
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for m <= n the Pade approximants {pi(n,m)(center dot;F-gamma)}, which locally deliver the best rational approximations to the Mittag-Leffler functions F-gamma, approximate the F-gamma as n -> infinity uniformly on the compact set D = {z : |z| <= 1} at a rate asymptotically equal to the best possible one. In particular, analogues of the well-known results of Braess and Trefethen relating to the approximation of exp z are proved for the Mittag-Leffler functions.
引用
收藏
页码:1011 / 1023
页数:13
相关论文
共 50 条
  • [21] On zeros of functions of Mittag-Leffler type
    Sedletskii, AM
    MATHEMATICAL NOTES, 2000, 68 (5-6) : 602 - 613
  • [22] On the generalized Mittag-Leffler type functions
    Gorenflo, R
    Kilbas, AA
    Rogosin, SV
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (3-4) : 215 - 224
  • [23] Oscillatory Integrals for Mittag-Leffler Functions
    Safarov, Akbar R.
    Ibragimov, Ulugbek A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2024, 17 (04): : 488 - 496
  • [24] Numerical evaluation of Mittag-Leffler functions
    William McLean
    Calcolo, 2021, 58
  • [25] On zeros of a certain family of Mittag-Leffler functions
    Popov A.Yu.
    Journal of Mathematical Sciences, 2007, 144 (4) : 4228 - 4231
  • [26] MITTAG-LEFFLER FUNCTIONS AND THEIR APPLICATIONS IN NETWORK SCIENCE
    Arrigo, Francesca
    Durastante, Fabio
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (04) : 1581 - 1601
  • [27] ON A MULTIVARIABLE CLASS OF MITTAG-LEFFLER TYPE FUNCTIONS
    Parmar, Rakesh Kumar
    Luo, Minjie
    Raina, Ravinder Krishna
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04): : 981 - 999
  • [28] Mittag-Leffler type functions of three variables
    Hasanov, Anvar
    Yuldashova, Hilola
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (02) : 1659 - 1675
  • [29] Geometric Properties of Normalized Mittag-Leffler Functions
    Noreen, Saddaf
    Raza, Mohsan
    Liu, Jin-Lin
    Arif, Muhammad
    SYMMETRY-BASEL, 2019, 11 (01):
  • [30] Convergence of Series in Mittag-Leffler Type Functions
    Paneva-Konovska, J.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2010, 1301 : 636 - 643