Stability of radio-frequency graphene field-effect transistors in ambient

被引:2
|
作者
Wang, Zidong [1 ]
Zhang, Qingping [2 ]
Wei, Zijun [1 ]
Peng, Pei [1 ]
Tian, Zhongzheng [1 ]
Ren, Liming [1 ]
Zhang, Xing [1 ]
Huang, Ru [1 ]
Wen, Jincai [2 ]
Fu, Yunyi [1 ]
机构
[1] Peking Univ, Inst Microelect, Key Lab Microelect Devices & Circuits MOE, Beijing 100871, Peoples R China
[2] Hangzhou Dianzi Univ, Key Lab RF Circuits & Syst MOE, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
radio-frequency; graphene; field-effect transistor; stability;
D O I
10.1088/1361-6463/aaef00
中图分类号
O59 [应用物理学];
学科分类号
摘要
While many studies on radio-frequency (RF) graphene field-effect transistor (GFET) aimed to study its high performances, explorations of the long-term stability of RF GFETs in atmosphere may be required as well. In this paper, we investigated the stability of the RF GFETs stored in ambient for four years. Both the RF and direct current characteristics are measured and compared with the initial properties. Changes of current-gain cut-off frequency and field-effect mobility, reductions of maximum oscillation frequency, peak transconductance and gate capacitance are observed butthe extracted contact resistance remains unchanged. The permeation of water vapor and oxygen into the thin Al2O3 dielectric, the diffusion of Pd atoms from contact onto the graphene channel and the rougher Al2O3 surface may challenge the stability of RF GFETs. This work may pave the way for the fabrication of more stable RF GFETs, which further serve steady graphene-based RF circuits.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Sub-Micron Gallium Oxide Radio Frequency Field-Effect Transistors
    Chabak, K. D.
    Walker, D. E., Jr.
    Green, A. J.
    Crespo, A.
    Lindquist, M.
    Leedy, K.
    Tetlak, S.
    Gilbert, R.
    Moser, N. A.
    Jessen, G.
    2018 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP), 2018,
  • [32] Analyses on Small-Signal Parameters and Radio-Frequency Modeling of Gate-All-Around Tunneling Field-Effect Transistors
    Cho, Seongjae
    Lee, Jae Sung
    Kim, Kyung Rok
    Park, Byung-Gook
    Harris, James S., Jr.
    Kang, In Man
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (12) : 4164 - 4171
  • [33] Energy Dissipation in Graphene Field-Effect Transistors
    Freitag, Marcus
    Steiner, Mathias
    Martin, Yves
    Perebeinos, Vasili
    Chen, Zhihong
    Tsang, James C.
    Avouris, Phaedon
    NANO LETTERS, 2009, 9 (05) : 1883 - 1888
  • [34] A computational study of high-frequency behavior of graphene field-effect transistors
    Chauhan, Jyotsna
    Liu, Leitao
    Lu, Yang
    Guo, Jing
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (09)
  • [35] Sensing at the Surface of Graphene Field-Effect Transistors
    Fu, Wangyang
    Jiang, Lin
    van Geest, Erik P.
    Lima, Lia M. C.
    Schneider, Gregory F.
    ADVANCED MATERIALS, 2017, 29 (06)
  • [36] Tunnel field-effect transistors with graphene channels
    D. A. Svintsov
    V. V. Vyurkov
    V. F. Lukichev
    A. A. Orlikovsky
    A. Burenkov
    R. Oechsner
    Semiconductors, 2013, 47 : 279 - 284
  • [37] High-Frequency Noise Characterization and Modeling of Graphene Field-Effect Transistors
    Deng, Marina
    Fadil, Dalal
    Wei, Wei
    Pallecchi, Emiliano
    Happy, Henri
    Dambrine, Gilles
    De Matos, Magali
    Zimmer, Thomas
    Fregonese, Sebastien
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (06) : 2116 - 2123
  • [38] Graphene field-effect transistors: the road to bioelectronics
    Donnelly, Matthew
    Mao, Dacheng
    Park, Junsu
    Xu, Guangyu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (49)
  • [39] Tunnel field-effect transistors with graphene channels
    Svintsov, D. A.
    Vyurkov, V. V.
    Lukichev, V. F.
    Orlikovsky, A. A.
    Burenkov, A.
    Oechsner, R.
    SEMICONDUCTORS, 2013, 47 (02) : 279 - 284
  • [40] Low-frequency noise and hysteresis in graphene field-effect transistors on oxide
    Imam, S. A.
    Sabri, S.
    Szkopek, T.
    MICRO & NANO LETTERS, 2010, 5 (01) : 37 - 41