The first eigenfunctions and eigenvalue of the p-Laplacian on Finsler manifolds

被引:5
|
作者
Yin SongTing [1 ]
He Qun [2 ]
机构
[1] Tongling Univ, Dept Math & Comp Sci, Tongling 244000, Peoples R China
[2] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
the first eigenvalue; p-Laplacian; Ricci curvature; S curvature; COMPACT RIEMANNIAN MANIFOLD; ELLIPTIC-EQUATIONS; RICCI CURVATURE; LOWER BOUNDS; INEQUALITIES; REGULARITY; FORMULA;
D O I
10.1007/s11425-015-0411-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves that the first eigenfunctions of the Finsler p-Lapalcian are C-1,C- alpha. Using a gradient comparison theorem and one-dimensional model, we obtain the sharp lower bound of the first Neumann and closed eigenvalue of the p-Laplacian on a compact Finsler manifold with nonnegative weighted Ricci curvature, on which a lower bound of the first Dirichlet eigenvalue of the p-Laplacian is also obtained.
引用
收藏
页码:1769 / 1794
页数:26
相关论文
共 50 条
  • [31] OPTIMIZATION OF THE FIRST EIGENVALUE IN PROBLEMS INVOLVING THE p-LAPLACIAN
    Cuccu, Fabrizio
    Emamizadeh, Behrouz
    Porru, Giovanni
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (05) : 1677 - 1687
  • [32] The first eigenvalue of the p-Laplacian on a compact Riemannian manifold
    Kawai, S
    Nakauchi, N
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (1-2) : 33 - 46
  • [33] Estimates from below for the first eigenvalue of the p-Laplacian
    Kutev, Nikolai
    Rangelov, Tsviatko
    SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159
  • [34] ON THE STRICT MONOTONICITY OF THE FIRST EIGENVALUE OF THE p-LAPLACIAN ON ANNULI
    Anoop, T., V
    Bobkov, Vladimir
    Sasi, Sarath
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (10) : 7181 - 7199
  • [35] THE FIRST NONZERO EIGENVALUE OF THE p-LAPLACIAN ON DIFFERENTIAL FORMS
    Seto, Shoo
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 309 (01) : 213 - 222
  • [36] On the uniqueness of eigenfunctions for the vectorial p-Laplacian
    Hynd, Ryan
    Kawohl, Bernd
    Lindqvist, Peter
    ARCHIV DER MATHEMATIK, 2023, 121 (5-6) : 745 - 755
  • [37] Eigenvalue problems for the p-Laplacian
    Lê, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 1057 - 1099
  • [38] Basis properties of eigenfunctions of the p-Laplacian
    Binding, Paul
    Boulton, Lyonell
    Cepicka, Jan
    Drabek, Pavel
    Girg, Petr
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (12) : 3487 - 3494
  • [39] On the uniqueness of eigenfunctions for the vectorial p-Laplacian
    Ryan Hynd
    Bernd Kawohl
    Peter Lindqvist
    Archiv der Mathematik, 2023, 121 : 745 - 755
  • [40] ON THE FIRST EIGENVALUE OF THE MEAN FINSLER-LAPLACIAN
    He, Qun
    Zeng, Fanqi
    Zeng, Daxiao
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 1162 - 1172