On the uniqueness of eigenfunctions for the vectorial p-Laplacian

被引:0
|
作者
Ryan Hynd
Bernd Kawohl
Peter Lindqvist
机构
[1] University of Pennsylvania,Department of Mathematics
[2] Cologne University,Department of Mathematics and Computer Science
[3] Norwegian University of Science and Technology,Department of Mathematical Sciences
来源
Archiv der Mathematik | 2023年 / 121卷
关键词
Vectorial ; -Laplacian; Eigenfunction; Uniqueness; Primary 35P30; Secondary 35J30; 47J30; 49R50;
D O I
暂无
中图分类号
学科分类号
摘要
We study a nonlinear eigenvalue problem for vector-valued eigenfunctions and give a succinct uniqueness proof for minimizers of the associated Rayleigh quotient.
引用
收藏
页码:745 / 755
页数:10
相关论文
共 50 条
  • [1] On the uniqueness of eigenfunctions for the vectorial p-Laplacian
    Hynd, Ryan
    Kawohl, Bernd
    Lindqvist, Peter
    [J]. ARCHIV DER MATHEMATIK, 2023, 121 (5-6) : 745 - 755
  • [2] INEQUALITIES FOR EIGENFUNCTIONS OF THE P-LAPLACIAN
    Bhayo, B. A.
    Vuorinen, M.
    [J]. PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2013, 2 (01): : 14 - 37
  • [3] Basis properties of eigenfunctions of the p-Laplacian
    Binding, Paul
    Boulton, Lyonell
    Cepicka, Jan
    Drabek, Pavel
    Girg, Petr
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (12) : 3487 - 3494
  • [4] EXISTENCE AND NONEXISTENCE OF POSITIVE EIGENFUNCTIONS FOR THE P-LAPLACIAN
    BINDING, PA
    HUANG, YX
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) : 1833 - 1838
  • [5] ON THE STRUCTURE OF THE SECOND EIGENFUNCTIONS OF THE p-LAPLACIAN ON A BALL
    Anoop, T. V.
    Drabek, P.
    Sasi, Sarath
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) : 2503 - 2512
  • [6] THE LIMIT OF FIRST EIGENFUNCTIONS OF THE p-LAPLACIAN ON GRAPHS
    Ge, Huabin
    Hua, Bobo
    Jiang, Wenfeng
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2021, 312 (01) : 103 - 112
  • [7] ON MULTIPLICITY OF EIGENVALUES AND SYMMETRY OF EIGENFUNCTIONS OF THE p-LAPLACIAN
    Audoux, Benjamin
    Bobkov, Vladimir
    Parini, Enea
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 51 (02) : 565 - 582
  • [8] On the structure of periodic eigenvalues of the vectorial p-Laplacian
    Liu, Changjian
    Zhang, Meirong
    [J]. NONLINEARITY, 2022, 35 (05) : 2206 - 2240
  • [9] Regularity and symmetry results for the vectorial p-Laplacian
    [J]. Sciunzi, Berardino (sciunzi@mat.unical.it), 2025, 251
  • [10] The first eigenfunctions and eigenvalue of the p-Laplacian on Finsler manifolds
    Yin SongTing
    He Qun
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (09) : 1769 - 1794