On the structure of periodic eigenvalues of the vectorial p-Laplacian

被引:0
|
作者
Liu, Changjian [1 ]
Zhang, Meirong [2 ]
机构
[1] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
vectorial p-Laplacian; periodic eigenvalues; eigenfunctions; Hamiltonian systems of degree two of freedom; complete integrability; scaling angular momenta; reduced dynamical systems;
D O I
10.1088/1361-6544/ac5a63
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we will solve an open problem raised by Manasevich and Mawhin twenty years ago on the structure of the periodic eigenvalues of the vectorial p-Laplacian. This is an Euler-Lagrangian equation on the plane or in higher dimensional Euclidean spaces. The main result obtained is that for any exponent p other than 2, the vectorial p-Laplacian on the plane will admit infinitely many different sequences of periodic eigenvalues with a given period. These sequences of eigenvalues are constructed using the notion of scaling momenta we will introduce. The whole proof is based on the complete integrability of the equivalent Hamiltonian system, the tricky reduction to two-dimensional dynamical systems, and a number-theoretical distinguishing between different sequences of eigenvalues. Some numerical simulations to the new sequences of eigenvalues and eigenfunctions will be given. Several further conjectures towards to the panorama of the spectral sets will be imposed.
引用
收藏
页码:2206 / 2240
页数:35
相关论文
共 50 条
  • [1] Extremal p-Laplacian eigenvalues
    Antunes, Pedro R. S.
    NONLINEARITY, 2019, 32 (12) : 5087 - 5109
  • [2] On the perturbation of eigenvalues for the p-Laplacian
    Melián, JG
    De Lis, JS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (10): : 893 - 898
  • [3] Mixed eigenvalues of p-Laplacian
    Mu-Fa Chen
    Lingdi Wang
    Yuhui Zhang
    Frontiers of Mathematics in China, 2015, 10 : 249 - 274
  • [4] Mixed eigenvalues of p-Laplacian
    Chen, Mu-Fa
    Wang, Lingdi
    Zhang, Yuhui
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (02) : 249 - 274
  • [5] EIGENVALUES OF WEIGHTED p-LAPLACIAN
    Wang, Lihan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (12) : 4357 - 4370
  • [6] On the eigenvalues of the p-Laplacian with varying p
    Huang, YX
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) : 3347 - 3354
  • [7] LOWER ROUNDS FOR THE FIRST EIGENVALUES OF THE p-LAPLACIAN AND THE WEIGHTED p-LAPLACIAN
    Sun, He-Jun
    Han, Chengyue
    Zeng, Lingzhong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 585 - 596
  • [8] On the uniqueness of eigenfunctions for the vectorial p-Laplacian
    Hynd, Ryan
    Kawohl, Bernd
    Lindqvist, Peter
    ARCHIV DER MATHEMATIK, 2023, 121 (5-6) : 745 - 755
  • [9] On the uniqueness of eigenfunctions for the vectorial p-Laplacian
    Ryan Hynd
    Bernd Kawohl
    Peter Lindqvist
    Archiv der Mathematik, 2023, 121 : 745 - 755
  • [10] Titchmarsh's asymptotic formula for periodic eigenvalues and an extension to the p-Laplacian
    Brown, B. M.
    Eastham, M. S. P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 1255 - 1266