The first eigenfunctions and eigenvalue of the p-Laplacian on Finsler manifolds

被引:5
|
作者
Yin SongTing [1 ]
He Qun [2 ]
机构
[1] Tongling Univ, Dept Math & Comp Sci, Tongling 244000, Peoples R China
[2] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
the first eigenvalue; p-Laplacian; Ricci curvature; S curvature; COMPACT RIEMANNIAN MANIFOLD; ELLIPTIC-EQUATIONS; RICCI CURVATURE; LOWER BOUNDS; INEQUALITIES; REGULARITY; FORMULA;
D O I
10.1007/s11425-015-0411-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves that the first eigenfunctions of the Finsler p-Lapalcian are C-1,C- alpha. Using a gradient comparison theorem and one-dimensional model, we obtain the sharp lower bound of the first Neumann and closed eigenvalue of the p-Laplacian on a compact Finsler manifold with nonnegative weighted Ricci curvature, on which a lower bound of the first Dirichlet eigenvalue of the p-Laplacian is also obtained.
引用
收藏
页码:1769 / 1794
页数:26
相关论文
共 50 条
  • [41] ESTIMATES FOR THE FIRST EIGENVALUE FOR p-LAPLACIAN WITH MIXED BOUNDARY CONDITIONS
    Wang, Kui
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (01): : 285 - 302
  • [42] First Eigenvalue of Weighted p-Laplacian Under Cotton Flow
    Saha, Apurba
    Azami, Shahroud
    Hui, Shyamal Kumar
    FILOMAT, 2021, 35 (09) : 2919 - 2926
  • [43] VARIATION OF THE FIRST EIGENVALUE OF p-LAPLACIAN ON EVOLVING GEOMETRY AND APPLICATIONS
    Abolarinwa, Abimbola
    Adebimpe, Olukayode
    Mao, Jing
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019
  • [44] The Fredholm alternative at the first eigenvalue for the one dimensional p-Laplacian
    del Pino, M
    Drábek, P
    Manásevich, R
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 151 (02) : 386 - 419
  • [45] Upper bound for the first nonzero eigenvalue related to the p-Laplacian
    Verma, Sheela
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):
  • [46] Positive Solutions for the p-Laplacian and Bounds for its First Eigenvalue
    Bueno, H.
    Ercole, G.
    Zumpano, A.
    ADVANCED NONLINEAR STUDIES, 2009, 9 (02) : 313 - 338
  • [47] The first eigenvalue of p-Laplacian systems with nonlinear boundary conditions
    Kandilakis, D. A.
    Magiropoulos, M.
    Zographopoulos, N. B.
    BOUNDARY VALUE PROBLEMS, 2005, 2005 (03) : 307 - 321
  • [48] An optimization problem for the first eigenvalue of the p-Laplacian plus a potential
    Fernandez Bonder, Julian
    Del Pezzo, Leandro M.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) : 675 - 690
  • [49] Upper bound for the first nonzero eigenvalue related to the p-Laplacian
    Sheela Verma
    Proceedings - Mathematical Sciences, 2020, 130
  • [50] First eigenvalue of the p-Laplacian under integral curvature condition
    Seto, Shoo
    Wei, Guofang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 163 : 60 - 70