Machine Learning Reimagined: The Promise of Interpretability to Combat Bias

被引:2
|
作者
Maurer, Lydia R. [1 ]
Bertsimas, Dimitris [2 ,3 ]
Kaafarani, Haytham M. A. [4 ]
机构
[1] Massachusetts Gen Hosp, Dept Surg, Boston, MA 02114 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Interpretable AI, Boston, MA USA
[4] Massachusetts Gen Hosp, Div Trauma Emergency Surg & Surg Crit Care, Boston, MA 02114 USA
关键词
HEALTH;
D O I
10.1097/SLA.0000000000005396
中图分类号
R61 [外科手术学];
学科分类号
摘要
[No abstract available]
引用
收藏
页码:E738 / E739
页数:2
相关论文
共 50 条
  • [21] Interpretability and Explainability of Machine Learning Models: Achievements and Challenges
    Henriques, J.
    Rocha, T.
    de Carvalho, P.
    Silva, C.
    Paredes, S.
    INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2022, ICBHI 2022, 2024, 108 : 81 - 94
  • [22] Philosophy of science at sea: Clarifying the interpretability of machine learning
    Beisbart, Claus
    Raz, Tim
    PHILOSOPHY COMPASS, 2022, 17 (06)
  • [23] The Importance of Interpretability and Validations of Machine-Learning Models
    Yamasawa, Daisuke
    Ozawa, Hideki
    Goto, Shinichi
    CIRCULATION JOURNAL, 2024, 88 (01) : 157 - 158
  • [24] Measuring Interpretability for Different Types of Machine Learning Models
    Zhou, Qing
    Liao, Fenglu
    Mou, Chao
    Wang, Ping
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING: PAKDD 2018 WORKSHOPS, 2018, 11154 : 295 - 308
  • [25] Interpretability and Fairness in Machine Learning: A Formal Methods Approach
    Ghosh, Bishwamittra
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 7083 - 7084
  • [26] Interpretability of Machine Learning Solutions in Industrial Decision Engineering
    Kolyshkina, Inna
    Simoff, Simeon
    DATA MINING, AUSDM 2019, 2019, 1127 : 156 - 170
  • [27] Explainable AI: A Review of Machine Learning Interpretability Methods
    Linardatos, Pantelis
    Papastefanopoulos, Vasilis
    Kotsiantis, Sotiris
    ENTROPY, 2021, 23 (01) : 1 - 45
  • [28] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [29] Can Omics Help in Prognostic Machine Learning Interpretability?
    Uche, C. Z.
    Caruana, R.
    Lee, S. H.
    Geng, H.
    Wright, C. M.
    Xiao, Y.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E124 - E125
  • [30] Survey on Techniques, Applications and Security of Machine Learning Interpretability
    Ji S.
    Li J.
    Du T.
    Li B.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (10): : 2071 - 2096