The Importance of Interpretability and Validations of Machine-Learning Models

被引:0
|
作者
Yamasawa, Daisuke [1 ]
Ozawa, Hideki [2 ]
Goto, Shinichi [2 ,3 ]
机构
[1] Southern TOHOKU Gen Hosp, Koriyama, Japan
[2] Tokai Univ, Sch Med, Dept Med, Isehara, Japan
[3] Tokai Univ, Dept Med, Sch Med, 143 Shimokasuya, Isehara 2591143, Japan
关键词
D O I
10.1253/circj.CJ-23-0857
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:157 / 158
页数:2
相关论文
共 50 条
  • [1] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    [J]. ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [2] Certified Machine-Learning Models
    Damiani, Ernesto
    Ardagna, Claudio A.
    [J]. SOFSEM 2020: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2020, 12011 : 3 - 15
  • [3] Machine-learning interpretability techniques for seismic performance assessment of infrastructure systems
    Mangalathu, Sujith
    Karthikeyan, Karthika
    Feng, De-Cheng
    Jeon, Jong-Su
    [J]. ENGINEERING STRUCTURES, 2022, 250
  • [4] Availability and reporting quality of external validations of machine-learning prediction models with orthopedic surgical outcomes: a systematic review
    Groot, Olivier Q.
    Bindels, Bas J. J.
    Ogink, Paul T.
    Kapoor, Neal D.
    Twining, Peter K.
    Collins, Austin K.
    Bongers, Michiel E. R.
    Lans, Amanda
    Oosterhoff, Jacobsen H. F.
    Karhade, Aditya, V
    Verlaan, Jorrit-Jan
    Schwab, Joseph H.
    [J]. ACTA ORTHOPAEDICA, 2021, 92 (04) : 385 - 393
  • [5] Machine-Learning Studies on Spin Models
    Shiina, Kenta
    Mori, Hiroyuki
    Okabe, Yutaka
    Lee, Hwee Kuan
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Machine-Learning Studies on Spin Models
    Kenta Shiina
    Hiroyuki Mori
    Yutaka Okabe
    Hwee Kuan Lee
    [J]. Scientific Reports, 10
  • [7] Interpretability and Explainability of Machine Learning Models: Achievements and Challenges
    Henriques, J.
    Rocha, T.
    de Carvalho, P.
    Silva, C.
    Paredes, S.
    [J]. INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2022, ICBHI 2022, 2024, 108 : 81 - 94
  • [8] Measuring Interpretability for Different Types of Machine Learning Models
    Zhou, Qing
    Liao, Fenglu
    Mou, Chao
    Wang, Ping
    [J]. TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING: PAKDD 2018 WORKSHOPS, 2018, 11154 : 295 - 308
  • [9] The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production
    Optis, Mike
    Perr-Sauer, Jordan
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 112 : 27 - 41
  • [10] Synchronization of chaotic systems and their machine-learning models
    Weng, Tongfeng
    Yang, Huijie
    Gu, Changgui
    Zhang, Jie
    Small, Michael
    [J]. PHYSICAL REVIEW E, 2019, 99 (04)