Machine Learning Reimagined: The Promise of Interpretability to Combat Bias

被引:2
|
作者
Maurer, Lydia R. [1 ]
Bertsimas, Dimitris [2 ,3 ]
Kaafarani, Haytham M. A. [4 ]
机构
[1] Massachusetts Gen Hosp, Dept Surg, Boston, MA 02114 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Interpretable AI, Boston, MA USA
[4] Massachusetts Gen Hosp, Div Trauma Emergency Surg & Surg Crit Care, Boston, MA 02114 USA
关键词
HEALTH;
D O I
10.1097/SLA.0000000000005396
中图分类号
R61 [外科手术学];
学科分类号
摘要
[No abstract available]
引用
收藏
页码:E738 / E739
页数:2
相关论文
共 50 条
  • [31] The Promise of Machine Learning: When Will it be Delivered?
    Akbilgic, Oguz
    Davis, Robert L.
    JOURNAL OF CARDIAC FAILURE, 2019, 25 (06) : 484 - 485
  • [32] Promise and Frustration Machine Learning in Cardiology
    Fornwalt, Brandon K.
    Pfeifer, John M.
    CIRCULATION-CARDIOVASCULAR IMAGING, 2021, 14 (06) : 538 - 541
  • [33] A Cognitive Load Theory (CLT) Analysis of Machine Learning Explainability, Transparency, Interpretability, and Shared Interpretability
    Fox, Stephen
    Rey, Vitor Fortes
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2024, 6 (03): : 1494 - 1509
  • [34] On the interpretability of machine learning-based model for predicting hypertension
    Radwa Elshawi
    Mouaz H. Al-Mallah
    Sherif Sakr
    BMC Medical Informatics and Decision Making, 19
  • [35] Accuracy, Fairness, and Interpretability of Machine Learning Criminal Recidivism Models
    Ingram, Eric
    Gursoy, Furkan
    Kakadiaris, Ioannis A.
    2022 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, BDCAT, 2022, : 233 - 241
  • [36] Machine learning in medicine: should the pursuit of enhanced interpretability be abandoned?
    Yoon, Chang Ho
    Torrance, Robert
    Scheinerman, Naomi
    JOURNAL OF MEDICAL ETHICS, 2022, 48 (09) : 581 - 585
  • [37] On the interpretability of machine learning-based model for predicting hypertension
    Elshawi, Radwa
    Al-Mallah, Mouaz H.
    Sakr, Sherif
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (1)
  • [38] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [39] Investigating the reliability and interpretability of machine learning frameworks for chemical retrosynthesis
    Hastedt, Friedrich
    Bailey, Rowan M.
    Hellgardt, Klaus
    Yaliraki, Sophia N.
    Chanona, Ehecatl Antonio del Rio
    Zhang, Dongda
    DIGITAL DISCOVERY, 2024, 3 (06): : 1194 - 1212
  • [40] Opening the black box: interpretability of machine learning algorithms in electrocardiography
    Bodini, Matteo
    Rivolta, Massimo W.
    Sassi, Roberto
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2212):