Flexible mechanical metamaterials

被引:1131
|
作者
Bertoldi, Katia [1 ]
Vitelli, Vincenzo [2 ,3 ,4 ]
Christensen, Johan [5 ]
van Hecke, Martin [6 ,7 ]
机构
[1] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Leiden Univ, Inst Lorentz, Postbus 9506, NL-2300 RA Leiden, Netherlands
[3] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[4] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[5] Univ Carlos III Madrid, Inst Gregorio Millan Barbany, Ave Univ 30, Leganes 28916, Madrid, Spain
[6] AMOLF, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands
[7] Leiden Univ, Huygens Kamerlingh Onnes Labs, Postbus 9504, NL-2300 RA Leiden, Netherlands
来源
NATURE REVIEWS MATERIALS | 2017年 / 2卷 / 11期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
ARCHITECTED MATERIALS; ELASTIC-WAVES; KIRIGAMI; SHAPE; DESIGN; SOFT; BEHAVIOR; NANOCOMPOSITES; PROPAGATION; TRANSITION;
D O I
10.1038/natrevmats.2017.66
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mechanical metamaterials exhibit properties and functionalities that cannot be realized in conventional materials. Originally, the field focused on achieving unusual (zero or negative) values for familiar mechanical parameters, such as density, Poisson's ratio or compressibility, but more recently, new classes of metamaterials - including shape-morphing, topological and nonlinear metamaterials - have emerged. These materials exhibit exotic functionalities, such as pattern and shape transformations in response to mechanical forces, unidirectional guiding of motion and waves, and reprogrammable stiffness or dissipation. In this Review, we identify the design principles leading to these properties and discuss, in particular, linear and mechanism-based metamaterials (such as origami-based and kirigami-based metamaterials), metamaterials harnessing instabilities and frustration, and topological metamaterials. We conclude by outlining future challenges for the design, creation and conceptualization of advanced mechanical metamaterials.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Application of Multifunctional Mechanical Metamaterials
    Shanian, Ali
    Jette, Francois-Xavier
    Salehii, Mahtab
    Minh Quan Pham
    Schaenzer, Megan
    Bourgeois, Genevieve
    Bertoldi, Katia
    Gross, Andrew
    Javid, Farhad
    Backman, David
    Yandt, Scott
    Gerendas, Miklos
    Meis, Tobias
    Knobloch, Karsten
    Bake, Friedrich
    Peitsch, Dieter
    ADVANCED ENGINEERING MATERIALS, 2019, 21 (07)
  • [42] Vibrant times for mechanical metamaterials
    Christensen, Johan
    Kadic, Muamer
    Wegener, Martin
    Kraft, Oliver
    Wegener, Martin
    MRS COMMUNICATIONS, 2015, 5 (03) : 453 - 462
  • [43] Transformable topological mechanical metamaterials
    D. Zeb Rocklin
    Shangnan Zhou
    Kai Sun
    Xiaoming Mao
    Nature Communications, 8
  • [44] Rational design of mechanical metamaterials
    Geddes, Harry
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (10): : 618 - 618
  • [45] Hierarchical Auxetic Mechanical Metamaterials
    Gatt, Ruben
    Mizzi, Luke
    Azzopardi, Joseph I.
    Azzopardi, Keith M.
    Attard, Daphne
    Casha, Aaron
    Briffa, Joseph
    Grima, Joseph N.
    SCIENTIFIC REPORTS, 2015, 5
  • [46] Transformable topological mechanical metamaterials
    Rocklin, D. Zeb
    Zhou, Shangnan
    Sun, Kai
    Mao, Xiaoming
    NATURE COMMUNICATIONS, 2017, 8
  • [47] Rational design of mechanical metamaterials
    Harry Geddes
    Nature Computational Science, 2022, 2 : 618 - 618
  • [48] Soft Adaptive Mechanical Metamaterials
    Khajehtourian, Romik
    Kochmann, Dennis M.
    FRONTIERS IN ROBOTICS AND AI, 2021, 8
  • [49] A flexible design framework for lattice-based chiral mechanical metamaterials considering dynamic energy absorption
    Xu, Weiyun
    Zhou, Chang
    Zhang, Hanyu
    Liu, Zhao
    Zhu, Ping
    THIN-WALLED STRUCTURES, 2024, 203
  • [50] Ultralight, Ultrastiff Mechanical Metamaterials
    Zheng, Xiaoyu
    Lee, Howon
    Weisgraber, Todd H.
    Shusteff, Maxim
    DeOtte, Joshua
    Duoss, Eric B.
    Kuntz, Joshua D.
    Biener, Monika M.
    Ge, Qi
    Jackson, Julie A.
    Kucheyev, Sergei O.
    Fang, Nicholas X.
    Spadaccini, Christopher M.
    SCIENCE, 2014, 344 (6190) : 1373 - 1377