Flexible mechanical metamaterials

被引:1131
|
作者
Bertoldi, Katia [1 ]
Vitelli, Vincenzo [2 ,3 ,4 ]
Christensen, Johan [5 ]
van Hecke, Martin [6 ,7 ]
机构
[1] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Leiden Univ, Inst Lorentz, Postbus 9506, NL-2300 RA Leiden, Netherlands
[3] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[4] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[5] Univ Carlos III Madrid, Inst Gregorio Millan Barbany, Ave Univ 30, Leganes 28916, Madrid, Spain
[6] AMOLF, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands
[7] Leiden Univ, Huygens Kamerlingh Onnes Labs, Postbus 9504, NL-2300 RA Leiden, Netherlands
来源
NATURE REVIEWS MATERIALS | 2017年 / 2卷 / 11期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
ARCHITECTED MATERIALS; ELASTIC-WAVES; KIRIGAMI; SHAPE; DESIGN; SOFT; BEHAVIOR; NANOCOMPOSITES; PROPAGATION; TRANSITION;
D O I
10.1038/natrevmats.2017.66
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mechanical metamaterials exhibit properties and functionalities that cannot be realized in conventional materials. Originally, the field focused on achieving unusual (zero or negative) values for familiar mechanical parameters, such as density, Poisson's ratio or compressibility, but more recently, new classes of metamaterials - including shape-morphing, topological and nonlinear metamaterials - have emerged. These materials exhibit exotic functionalities, such as pattern and shape transformations in response to mechanical forces, unidirectional guiding of motion and waves, and reprogrammable stiffness or dissipation. In this Review, we identify the design principles leading to these properties and discuss, in particular, linear and mechanism-based metamaterials (such as origami-based and kirigami-based metamaterials), metamaterials harnessing instabilities and frustration, and topological metamaterials. We conclude by outlining future challenges for the design, creation and conceptualization of advanced mechanical metamaterials.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Auxetic mechanical metamaterials
    Kolken, H. M. A.
    Zadpoor, A. A.
    RSC ADVANCES, 2017, 7 (09): : 5111 - 5129
  • [22] Mechanical metamaterials and beyond
    Pengcheng Jiao
    Jochen Mueller
    Jordan R. Raney
    Xiaoyu (Rayne) Zheng
    Amir H. Alavi
    Nature Communications, 14
  • [23] Mechanical metamaterials and beyond
    Jiao, Pengcheng
    Mueller, Jochen
    Raney, Jordan R.
    Zheng, Xiaoyu
    Alavi, Amir H.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [24] The toughness of mechanical metamaterials
    Angkur Jyoti Dipanka Shaikeea
    Huachen Cui
    Mark O’Masta
    Xiaoyu Rayne Zheng
    Vikram Sudhir Deshpande
    Nature Materials, 2022, 21 : 297 - 304
  • [25] Programmable Mechanical Metamaterials
    Florijn, Bastiaan
    Coulais, Corentin
    van Hecke, Martin
    PHYSICAL REVIEW LETTERS, 2014, 113 (17)
  • [26] Digital Mechanical Metamaterials
    Ion, Alexandra
    Wall, Ludwig
    Kovacs, Robert
    Baudisch, Patrick
    PROCEEDINGS OF THE 2017 ACM SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'17), 2017, : 977 - 988
  • [27] 3D Printing of Flexible Mechanical Metamaterials: Synergistic Design of Process and Geometric Parameters
    Li, Nan
    Xue, Chenhao
    Chen, Shenggui
    Aiyiti, Wurikaixi
    Khan, Sadaf Bashir
    Liang, Jiahua
    Zhou, Jianping
    Lu, Bingheng
    POLYMERS, 2023, 15 (23)
  • [28] Flexible metamaterials, comprising multiferroic films
    Lee, Y. P.
    Yoo, Y. J.
    Kim, Y. J.
    Son, H. M.
    Hwang, J. S.
    2016 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2016,
  • [29] Flexible Metamaterials For Advanced Photonics Applications
    Reader-Harris, P.
    Pietrzyk, M.
    Shen, Y.
    Kirkpatrick, B.
    Di Falco, A.
    2014 8TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS), 2014,
  • [30] Fabrication and modulation of flexible electromagnetic metamaterials
    Yanshuo Feng
    Misheng Liang
    Xiaoguang Zhao
    Rui You
    Microsystems & Nanoengineering, 11 (1)