Flexible mechanical metamaterials

被引:1131
|
作者
Bertoldi, Katia [1 ]
Vitelli, Vincenzo [2 ,3 ,4 ]
Christensen, Johan [5 ]
van Hecke, Martin [6 ,7 ]
机构
[1] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Leiden Univ, Inst Lorentz, Postbus 9506, NL-2300 RA Leiden, Netherlands
[3] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[4] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[5] Univ Carlos III Madrid, Inst Gregorio Millan Barbany, Ave Univ 30, Leganes 28916, Madrid, Spain
[6] AMOLF, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands
[7] Leiden Univ, Huygens Kamerlingh Onnes Labs, Postbus 9504, NL-2300 RA Leiden, Netherlands
来源
NATURE REVIEWS MATERIALS | 2017年 / 2卷 / 11期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
ARCHITECTED MATERIALS; ELASTIC-WAVES; KIRIGAMI; SHAPE; DESIGN; SOFT; BEHAVIOR; NANOCOMPOSITES; PROPAGATION; TRANSITION;
D O I
10.1038/natrevmats.2017.66
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mechanical metamaterials exhibit properties and functionalities that cannot be realized in conventional materials. Originally, the field focused on achieving unusual (zero or negative) values for familiar mechanical parameters, such as density, Poisson's ratio or compressibility, but more recently, new classes of metamaterials - including shape-morphing, topological and nonlinear metamaterials - have emerged. These materials exhibit exotic functionalities, such as pattern and shape transformations in response to mechanical forces, unidirectional guiding of motion and waves, and reprogrammable stiffness or dissipation. In this Review, we identify the design principles leading to these properties and discuss, in particular, linear and mechanism-based metamaterials (such as origami-based and kirigami-based metamaterials), metamaterials harnessing instabilities and frustration, and topological metamaterials. We conclude by outlining future challenges for the design, creation and conceptualization of advanced mechanical metamaterials.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Characterization, stability, and application of domain walls in flexible mechanical metamaterials
    Deng, Bolei
    Yu, Siqin
    Forte, Antonio E.
    Tournat, Vincent
    Bertoldi, Katia
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (49) : 31002 - 31009
  • [12] Effect of predeformation on the propagation of vector solitons in flexible mechanical metamaterials
    Deng, B.
    Tournat, V
    Bertoldi, K.
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [13] METAMATERIALS Flexible coating
    Graydon, Oliver
    NATURE PHOTONICS, 2019, 13 (07) : 438 - 438
  • [14] UV-curable Polydimethylsiloxane Photolithography and Its Application to Flexible Mechanical Metamaterials
    Sekiguchi, Ten
    Ueno, Hidetaka
    Menon, Vivek Anand
    Ichige, Ryo
    Tanaka, Yuya
    Toshiyoshi, Hiroshi
    Suzuki, Takaaki
    SENSORS AND MATERIALS, 2023, 35 (06) : 1995 - 2011
  • [15] Mechanical metamaterials
    Craster, Richard
    Guenneau, Sebastien
    Kadic, Muamer
    Wegener, Martin
    REPORTS ON PROGRESS IN PHYSICS, 2023, 86 (09)
  • [16] Flexible metamaterials at visible wavelengths
    Di Falco, Andrea
    Ploschner, Martin
    Krauss, Thomas F.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [17] Flexible Helices for Nonlinear Metamaterials
    Slobozhanyuk, Alexey P.
    Lapine, Mikhail
    Powell, David A.
    Shadrivov, Ilya V.
    Kivshar, Yuri S.
    McPhedran, Ross C.
    Belov, Pavel A.
    ADVANCED MATERIALS, 2013, 25 (25) : 3409 - 3412
  • [18] Disordered mechanical metamaterials
    Michael Zaiser
    Stefano Zapperi
    Nature Reviews Physics, 2023, 5 : 679 - 688
  • [19] The toughness of mechanical metamaterials
    Shaikeea, Angkur Jyoti Dipanka
    Cui, Huachen
    O'Masta, Mark
    Zheng, Xiaoyu Rayne
    Deshpande, Vikram Sudhir
    NATURE MATERIALS, 2022, 21 (03) : 297 - +
  • [20] Disordered mechanical metamaterials
    Zaiser, Michael
    Zapperi, Stefano
    NATURE REVIEWS PHYSICS, 2023, 5 (11) : 679 - 688