Neural networks for photometric redshifts evaluation

被引:0
|
作者
Tagliaferri, R [1 ]
Longo, G
Andreon, S
Capozziello, S
Donalek, C
Giordano, G
机构
[1] Univ Salerno, DMI, I-84081 Baronissi, SA, Italy
[2] Unita Salerno, INFM, I-84081 Baronissi, Italy
[3] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy
[4] Osservatorio Astronom Brera, INAF, Milan, Italy
[5] Univ Salerno, Dipartimento Fis, I-84081 Baronissi, Italy
[6] Univ Naples Federico II, Dipartimento Matemat Applicata, I-80126 Naples, Italy
来源
NEURAL NETS | 2003年 / 2859卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a neural network based approach to the determination of photometric redshift, which is a very important parameter to find the depth of astronomical objects in the sky. The method was tested on the Sloan Digital Sky Survey Early Data Release reaching an accuracy comparable and, in some cases, better than Spectral Energy Distribution template fitting techniques. We used Multi-Layer Perceptrons operating in a Bayesian framework to compute the parameter estimation, and a Self Organizing Map to estimate the accuracy of the results, evaluating the contamination between the classes of objects with a good prediction rate and with a poor one. In the best experiment, the implemented network reached an accuracy of 0.020 (robust error) in the range 0 < Z(phot) < 0.3, and of 0.022 in the range 0 < z(phot) < 0.5.
引用
收藏
页码:226 / 234
页数:9
相关论文
共 50 条
  • [41] Predicting Photometric Redshifts with Polynomial Regression
    Wang, Dan
    Zhang, Yan-xia
    Zhao, Yong-heng
    ADVANCED SOFTWARE AND CONTROL FOR ASTRONOMY II, PTS 1 & 2, 2008, 7019
  • [42] Impact of subsolar metallicities on photometric redshifts
    Kotulla, Ralf
    Fritze, Uta
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 393 (01) : L55 - L59
  • [43] Bayesian photometric redshifts of blended sources
    Jones, Daniel M.
    Heavens, Alan F.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 483 (02) : 2487 - 2505
  • [44] Improving photometric redshifts with Lyα tomography
    Schmittfull, Marcel
    White, Martin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 463 (01) : 332 - 337
  • [45] An optimal multihump filter for photometric redshifts
    Budavári, T
    Szalay, AS
    Csabai, I
    Connolly, AJ
    Tsvetanov, Z
    ASTRONOMICAL JOURNAL, 2001, 121 (06): : 3266 - 3269
  • [46] Photometric redshifts with the Multilayer Perceptron Neural Network: Application to the HDF-S and SDSS
    Vanzella, E
    Cristiani, S
    Fontana, A
    Nonino, M
    Arnouts, S
    Giallongo, E
    Grazian, A
    Fasano, G
    Popesso, P
    Saracco, P
    Zaggia, S
    ASTRONOMY & ASTROPHYSICS, 2004, 423 (02) : 761 - 776
  • [47] Galaxy clustering using photometric redshifts
    Soltan, A. M.
    Chodorowski, M. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (01) : 1013 - 1025
  • [48] Photometric redshifts using submm wavelengths
    Wiklind, T
    ASTRONOMY, COSMOLOGY AND FUNDAMENTAL PHYSICS, PROCEEDINGS, 2003, : 491 - 492
  • [49] Estimating photometric redshifts with genetic algorithms
    Miles, Nick
    Freitas, Alex
    Serjeant, Stephen
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 1593 - +
  • [50] Photometric redshifts in the IRAC Shallow Survey
    Brodwin, M.
    Brown, M. J. I.
    Ashby, M. L. N.
    Bian, C.
    Brand, K.
    Dey, A.
    Eisenhardt, P. R.
    Eisenstein, D. J.
    Gonzalez, A. H.
    Huang, J. -S.
    Jannuzi, B. T.
    Kochanek, C. S.
    McKenzie, E.
    Murray, S. S.
    Pahre, M. A.
    Smith, H. A.
    Soifer, B. T.
    Stanford, S. A.
    Stern, D.
    Elston, R. J.
    ASTROPHYSICAL JOURNAL, 2006, 651 (02): : 791 - 803