Neural networks for photometric redshifts evaluation

被引:0
|
作者
Tagliaferri, R [1 ]
Longo, G
Andreon, S
Capozziello, S
Donalek, C
Giordano, G
机构
[1] Univ Salerno, DMI, I-84081 Baronissi, SA, Italy
[2] Unita Salerno, INFM, I-84081 Baronissi, Italy
[3] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy
[4] Osservatorio Astronom Brera, INAF, Milan, Italy
[5] Univ Salerno, Dipartimento Fis, I-84081 Baronissi, Italy
[6] Univ Naples Federico II, Dipartimento Matemat Applicata, I-80126 Naples, Italy
来源
NEURAL NETS | 2003年 / 2859卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a neural network based approach to the determination of photometric redshift, which is a very important parameter to find the depth of astronomical objects in the sky. The method was tested on the Sloan Digital Sky Survey Early Data Release reaching an accuracy comparable and, in some cases, better than Spectral Energy Distribution template fitting techniques. We used Multi-Layer Perceptrons operating in a Bayesian framework to compute the parameter estimation, and a Self Organizing Map to estimate the accuracy of the results, evaluating the contamination between the classes of objects with a good prediction rate and with a poor one. In the best experiment, the implemented network reached an accuracy of 0.020 (robust error) in the range 0 < Z(phot) < 0.3, and of 0.022 in the range 0 < z(phot) < 0.5.
引用
收藏
页码:226 / 234
页数:9
相关论文
共 50 条
  • [21] Photometric redshifts and photometry errors
    Wittman, D.
    Riechers, P.
    Margoniner, V. E.
    ASTROPHYSICAL JOURNAL LETTERS, 2007, 671 (02): : L109 - L112
  • [22] A UNIFIED FRAMEWORK FOR PHOTOMETRIC REDSHIFTS
    Budavari, Tamas
    ASTROPHYSICAL JOURNAL, 2009, 695 (01): : 747 - 754
  • [23] On the realistic validation of photometric redshifts
    Beck, R.
    Lin, C. -A.
    Ishida, E. E. O.
    Gieseke, F.
    de Souza, R. S.
    Costa-Duarte, M. V.
    Hattab, M. W.
    Krone-Martins, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (04) : 4323 - 4339
  • [24] Mixture models for photometric redshifts
    Ansari, Zoe
    Agnello, Adriano
    Gall, Christa
    ASTRONOMY & ASTROPHYSICS, 2021, 650
  • [25] Morpho-photometric redshifts
    Menou, Kristen
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 489 (04) : 4802 - 4808
  • [26] RANDOM FORESTS FOR PHOTOMETRIC REDSHIFTS
    Carliles, Samuel
    Budavari, Tamas
    Heinis, Sebastien
    Priebe, Carey
    Szalay, Alexander S.
    ASTROPHYSICAL JOURNAL, 2010, 712 (01): : 511 - 515
  • [27] Revised SWIRE photometric redshifts
    Rowan-Robinson, Michael
    Gonzalez-Solares, Eduardo
    Vaccari, Mattia
    Marchetti, Lucia
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 428 (03) : 1958 - 1967
  • [28] Bayesian photometric redshifts (BPZ)
    Benítez, N
    PHOTOMETRIC REDSHIFTS AND HIGH REDSHIFT GALAXIES, 1999, 191 : 31 - 36
  • [29] An orthogonal approach to photometric redshifts
    Connolly, AJ
    Budavari, T
    Szalay, AS
    Csabai, I
    Brunner, RJ
    PHOTOMETRIC REDSHIFTS AND HIGH REDSHIFT GALAXIES, 1999, 191 : 13 - 18
  • [30] Photometric redshifts: A glimpse of the future
    Szalay, AS
    PHOTOMETRIC REDSHIFTS AND HIGH REDSHIFT GALAXIES, 1999, 191 : 363 - 374