Neural networks for photometric redshifts evaluation

被引:0
|
作者
Tagliaferri, R [1 ]
Longo, G
Andreon, S
Capozziello, S
Donalek, C
Giordano, G
机构
[1] Univ Salerno, DMI, I-84081 Baronissi, SA, Italy
[2] Unita Salerno, INFM, I-84081 Baronissi, Italy
[3] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy
[4] Osservatorio Astronom Brera, INAF, Milan, Italy
[5] Univ Salerno, Dipartimento Fis, I-84081 Baronissi, Italy
[6] Univ Naples Federico II, Dipartimento Matemat Applicata, I-80126 Naples, Italy
来源
NEURAL NETS | 2003年 / 2859卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a neural network based approach to the determination of photometric redshift, which is a very important parameter to find the depth of astronomical objects in the sky. The method was tested on the Sloan Digital Sky Survey Early Data Release reaching an accuracy comparable and, in some cases, better than Spectral Energy Distribution template fitting techniques. We used Multi-Layer Perceptrons operating in a Bayesian framework to compute the parameter estimation, and a Self Organizing Map to estimate the accuracy of the results, evaluating the contamination between the classes of objects with a good prediction rate and with a poor one. In the best experiment, the implemented network reached an accuracy of 0.020 (robust error) in the range 0 < Z(phot) < 0.3, and of 0.022 in the range 0 < z(phot) < 0.5.
引用
收藏
页码:226 / 234
页数:9
相关论文
共 50 条
  • [31] The many flavours of photometric redshifts
    Salvato, Mara
    Ilbert, Olivier
    Hoyle, Ben
    NATURE ASTRONOMY, 2019, 3 (03) : 212 - 222
  • [32] Photometric redshifts of starburst galaxies
    Liu, CT
    PHOTOMETRIC REDSHIFTS AND HIGH REDSHIFT GALAXIES, 1999, 191 : 99 - 104
  • [33] Nonsequential neural network for simultaneous, consistent classification, and photometric redshifts of OTELO galaxies
    de Diego, J. A.
    Nadolny, J.
    Bongiovanni, A.
    Cepa, J.
    Lara-Lospez, M. A.
    Gallego, J.
    Cervino, M.
    Sanchez-Portal, M.
    Gonzalez-Serrano, J. Ignacio
    Alfaro, E. J.
    Povic, M.
    Perez Garcia, A. M.
    Martinez, R. Perez
    Torres, C. P. Padilla
    Cedres, B.
    Garcia-Aguilar, D.
    Gonzalez, J. J.
    Gonzalez-Otero, M.
    Navarro-Martinez, R.
    Pintos-Castro, I
    ASTRONOMY & ASTROPHYSICS, 2021, 655 (655)
  • [34] Using a Neural Network Classifier to Select Galaxies with the Most Accurate Photometric Redshifts
    Broussard, Adam
    Gawiser, Eric
    ASTROPHYSICAL JOURNAL, 2021, 922 (02):
  • [35] Improving Photometric Redshifts Using Different Photometric Parameters
    Wang, Tao
    Cu, Q. -S.
    Huang, J. -S.
    STARBURST-AGN CONNECTION, 2009, 408 : 215 - +
  • [36] The FORS Deep Field:: Photometric data and photometric redshifts
    Bender, R
    Appenzeller, I
    Böhm, A
    Drory, N
    Fricke, KJ
    Gabasch, A
    Heidt, J
    Hopp, U
    Jäger, K
    Kümmel, M
    Mehlert, D
    Möllenhoff, C
    Moorwood, A
    Nicklas, H
    Noll, S
    Saglia, RP
    Seifert, W
    Seitz, S
    Stahl, O
    Sutorius, E
    Szeifert, T
    Wagner, SJ
    Ziegler, BL
    DEEP FIELDS, 2001, : 96 - 101
  • [37] Photometric Completeness Modelled with Neural Networks
    Harris, William E.
    Speagle, Joshua S.
    ASTRONOMICAL JOURNAL, 2024, 168 (01):
  • [38] Software kits for measuring photometric redshifts
    Wang, Dan
    Zhang, Yanxia
    Cui, Chenzhou
    Zhao, Yongheng
    ADVANCED SOFTWARE AND CONTROL FOR ASTRONOMY, 2006, 6274
  • [39] Multimodality for improved CNN photometric redshifts
    Ouahmed, R. Ait
    Arnouts, S.
    Pasquet, J.
    Treyer, M.
    Bertin, E.
    ASTRONOMY & ASTROPHYSICS, 2024, 683
  • [40] Photometric redshifts with surface brightness priors
    Stabenau, Hans F.
    Connolly, Andrew
    Jain, Bhuvnesh
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 387 (03) : 1215 - 1226