Neural networks for photometric redshifts evaluation

被引:0
|
作者
Tagliaferri, R [1 ]
Longo, G
Andreon, S
Capozziello, S
Donalek, C
Giordano, G
机构
[1] Univ Salerno, DMI, I-84081 Baronissi, SA, Italy
[2] Unita Salerno, INFM, I-84081 Baronissi, Italy
[3] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy
[4] Osservatorio Astronom Brera, INAF, Milan, Italy
[5] Univ Salerno, Dipartimento Fis, I-84081 Baronissi, Italy
[6] Univ Naples Federico II, Dipartimento Matemat Applicata, I-80126 Naples, Italy
来源
NEURAL NETS | 2003年 / 2859卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a neural network based approach to the determination of photometric redshift, which is a very important parameter to find the depth of astronomical objects in the sky. The method was tested on the Sloan Digital Sky Survey Early Data Release reaching an accuracy comparable and, in some cases, better than Spectral Energy Distribution template fitting techniques. We used Multi-Layer Perceptrons operating in a Bayesian framework to compute the parameter estimation, and a Self Organizing Map to estimate the accuracy of the results, evaluating the contamination between the classes of objects with a good prediction rate and with a poor one. In the best experiment, the implemented network reached an accuracy of 0.020 (robust error) in the range 0 < Z(phot) < 0.3, and of 0.022 in the range 0 < z(phot) < 0.5.
引用
收藏
页码:226 / 234
页数:9
相关论文
共 50 条
  • [1] Estimating photometric redshifts with artificial neural networks
    Firth, AE
    Lahav, O
    Somerville, RS
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 339 (04) : 1195 - 1202
  • [2] ANNz:: Estimating photometric redshifts using artificial neural networks
    Collister, AA
    Lahav, O
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2004, 116 (818) : 345 - 351
  • [3] QSO photometric redshifts using machine learning and neural networks
    Curran, S. J.
    Moss, J. P.
    Perrott, Y. C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (02) : 2639 - 2650
  • [5] Estimating photometric redshifts with artificial neural networks and multi-parameters
    Li, Li-Li
    Zhang, Yan-Xia
    Zhao, Yong-Heng
    Yang, Da-Wei
    CHINESE JOURNAL OF ASTRONOMY AND ASTROPHYSICS, 2007, 7 (03): : 448 - 456
  • [6] Measuring photometric redshifts using galaxy images and Deep Neural Networks
    Hoyle, B.
    ASTRONOMY AND COMPUTING, 2016, 16 : 34 - 40
  • [7] Applying Deep Neural Networks (DNN) for Measuring Photometric Redshifts from Galaxy Images: Preliminary Study
    Syarifudin, M. R. I.
    Hakim, M. I.
    Arifyanto, M. I.
    10TH SOUTHEAST ASIA ASTRONOMY NETWORK, 2019, 1231
  • [8] Photometric redshifts for the Kilo-Degree Survey Machine-learning analysis with artificial neural networks
    Bilicki, M.
    Hoekstra, H.
    Brown, M. J. I.
    Amaro, V.
    Blake, C.
    Cavuoti, S.
    de Jong, J. T. A.
    Georgiou, C.
    Hildebrandt, H.
    Wolf, C.
    Amon, A.
    Brescia, M.
    Brough, S.
    Costa-Duarte, M. V.
    Erben, T.
    Glazebrook, K.
    Grado, A.
    Heymans, C.
    Jarrett, T.
    Joudaki, S.
    Kuijken, K.
    Longo, G.
    Napolitano, N.
    Parkinson, D.
    Vellucci, C.
    Kleijn, G. A. Verdoes
    Wang, L.
    ASTRONOMY & ASTROPHYSICS, 2018, 616
  • [9] Estimation of Photometric Redshifts. II. Identification of Out-of-distribution Data with Neural Networks
    Lee, Joongoo
    Shin, Min-Su
    ASTRONOMICAL JOURNAL, 2022, 163 (02):
  • [10] PHOTOMETRIC REDSHIFTS OF GALAXIES
    LOH, ED
    SPILLAR, EJ
    ASTROPHYSICAL JOURNAL, 1986, 303 (01): : 154 - 161