Video Saliency Detection Using Object Proposals

被引:89
|
作者
Guo, Fang [1 ]
Wang, Wenguan [1 ]
Shen, Jianbing [1 ]
Shao, Ling [2 ]
Yang, Jian [3 ]
Tao, Dacheng [4 ,5 ]
Tang, Yuan Yan [6 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Key Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[2] Univ East Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
[3] Beijing Inst Technol, Sch Optoelect, Beijing Engn Res Ctr Mixed Real & Adv Display, Beijing 100081, Peoples R China
[4] Univ Sydney, Fac Engn & Informat Technol, UBTECH Sydney Artificial Intelligence Ctr, Darlington, NSW 2008, Australia
[5] Univ Sydney, Fac Engn & Informat Technol, Sch Informat Technol, Darlington, NSW 2008, Australia
[6] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Object proposals; object-level saliency cues; salient region detection; video saliency; SEGMENTATION; OPTIMIZATION; CONTRAST; TRACKING; DEEP;
D O I
10.1109/TCYB.2017.2761361
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a novel approach to identify salient object regions in videos via object proposals. The core idea is to solve the saliency detection problem by ranking and selecting the salient proposals based on object-level saliency cues. Object proposals offer a more complete and high-level representation, which naturally caters to the needs of salient object detection. As well as introducing this novel solution for video salient object detection, we reorganize various discriminative saliency cues and traditional saliency assumptions on object proposals. With object candidates, a proposal ranking and voting scheme, based on various object-level saliency cues, is designed to screen out nonsalient parts, select salient object regions, and to infer an initial saliency estimate. Then a saliency optimization process that considers temporal consistency and appearance differences between salient and nonsalient regions is used to refine the initial saliency estimates. Our experiments on public datasets (SegTrackV2, Freiburg-Berkeley Motion Segmentation Dataset, and Densely Annotated Video Segmentation) validate the effectiveness, and the proposed method produces significant improvements over state-of-the-art algorithms.
引用
收藏
页码:3159 / 3170
页数:12
相关论文
共 50 条
  • [31] Predictive Video Saliency Detection
    Li, Qian
    Chen, Shifeng
    Zhang, Beiwei
    [J]. PATTERN RECOGNITION, 2012, 321 : 178 - +
  • [32] Saliency-Aware Video Object Segmentation
    Wang, Wenguan
    Shen, Jianbing
    Yang, Ruigang
    Porikli, Fatih
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (01) : 20 - 33
  • [33] Attentive object detection using an information theoretic saliency measure
    Fritz, G
    Seifert, C
    Paletta, L
    Bischof, H
    [J]. ATTENTION AND PERFORMANCE IN COMPUTATIONAL VISION, 2005, 3368 : 29 - 41
  • [34] Image Object Saliency Detection using Center Surround Contrast
    Shinde, Aparna
    Chapaneri, Santosh
    Jayaswal, Deepak
    [J]. 2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 11 - 14
  • [35] FOREGROUND OBJECT DETECTION IN HIGHLY DYNAMIC SCENES USING SALIENCY
    Lin, Kai-Hsiang
    Khorrami, Pooya
    Wang, Jiangping
    Hasegawa-Johnson, Mark
    Huang, Thomas S.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1125 - 1129
  • [36] Fast Video Saliency Detection via Maximally Stable Region Motion and Object Repeatability
    Huang, Xiaoming
    Zhang, Yu-Jin
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4458 - 4470
  • [37] Pattern mining-based video saliency detection: Application to moving object segmentation
    Ramadan, Hiba
    Tairi, Hamid
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2018, 70 : 567 - 579
  • [38] Graph Transduction Learning of Object Proposals for Video Object Segmentation
    Wang, Tinghuai
    Wang, Huiling
    [J]. COMPUTER VISION - ACCV 2014, PT IV, 2015, 9006 : 553 - 568
  • [39] Video Saliency Detection Using Deep Convolutional Neural Networks
    Zhou, Xiaofei
    Liu, Zhi
    Gong, Chen
    Li, Gongyang
    Huang, Mengke
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PT II, 2018, 11257 : 308 - 319
  • [40] Video Saliency Detection Using Bi-directional LSTM
    Chi, Yang
    Li, Jinjiang
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (06): : 2444 - 2463