Graph Transduction Learning of Object Proposals for Video Object Segmentation

被引:0
|
作者
Wang, Tinghuai [1 ]
Wang, Huiling [1 ]
机构
[1] Nokia Technol, Tampere, Finland
来源
关键词
IMAGE;
D O I
10.1007/978-3-319-16817-3_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an unsupervised video object segmentation algorithm that detects recurring objects and learns cohort object proposals over space-time. Our core contribution is a graph transduction process that learns object proposals densely over space-time, exploiting both appearance models learned from rudimentary detections of sparse object-like regions, and their intrinsic structures. Our approach exploits the fact that rudimentary detections of recurring objects in video, despite appearance variation and sporadity of detection, collectively describe the primary object. By learning a holistic model given a small set of object-like regions, we propagate this prior knowledge of the recurring primary object to the rest of the video to generate a diverse set of object proposals in all frames, incorporating both spatial and temporal cues. This set of rich descriptions underpins a robust object segmentation method against the changes in appearance, shape and occlusion in natural videos.
引用
下载
收藏
页码:553 / 568
页数:16
相关论文
共 50 条
  • [1] Fully Connected Object Proposals for Video Segmentation
    Perazzi, Federico
    Wang, Oliver
    Gross, Markus
    Sorkine-Hornung, Alexander
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3227 - 3234
  • [2] LEARNING TO GENERATE VIDEO OBJECT SEGMENT PROPOSALS
    Li, Jianwu
    Zhou, Tianfei
    Lu, Yao
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 787 - 792
  • [3] Object proposals for salient object segmentation in videos
    Kalboussi, Rahma
    Azaza, Aymen
    van de Weijer, Joost
    Abdellaoui, Mehrez
    Douik, Ali
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (13-14) : 8677 - 8693
  • [4] Graph-to-Graph Energy Minimization for Video Object Segmentation
    Li, Yuezun
    Wen, Longyin
    Chang, Ming-Ching
    Lyu, Siwei
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2019,
  • [5] Object proposals for salient object segmentation in videos
    Rahma Kalboussi
    Aymen Azaza
    Joost van de Weijer
    Mehrez Abdellaoui
    Ali Douik
    Multimedia Tools and Applications, 2020, 79 : 8677 - 8693
  • [6] CONTEXT PROPAGATION FROM PROPOSALS FOR SEMANTIC VIDEO OBJECT SEGMENTATION
    Wang, Tinghuai
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 256 - 260
  • [7] Efficient video object segmentation by Graph-Cut
    Wang, Jinjun
    Xu, Wei
    Zhu, Shenghuo
    Gong, Yihong
    2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 496 - 499
  • [8] Automatic video object segmentation using graph cut
    Mu, Ying
    Zhang, Hong
    Wang, Helong
    Zuo, Wei
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 1505 - +
  • [9] Breaking the "Object" in Video Object Segmentation
    Tokmakov, Pavel
    Li, Jie
    Gaidon, Adrien
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22836 - 22845
  • [10] Learning Video Object Segmentation with Visual Memory
    Tokmakov, Pavel
    Inria, Karteek Alahari
    Schmid, Cordelia
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 4491 - 4500