Video Saliency Detection Using Object Proposals

被引:89
|
作者
Guo, Fang [1 ]
Wang, Wenguan [1 ]
Shen, Jianbing [1 ]
Shao, Ling [2 ]
Yang, Jian [3 ]
Tao, Dacheng [4 ,5 ]
Tang, Yuan Yan [6 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Key Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[2] Univ East Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
[3] Beijing Inst Technol, Sch Optoelect, Beijing Engn Res Ctr Mixed Real & Adv Display, Beijing 100081, Peoples R China
[4] Univ Sydney, Fac Engn & Informat Technol, UBTECH Sydney Artificial Intelligence Ctr, Darlington, NSW 2008, Australia
[5] Univ Sydney, Fac Engn & Informat Technol, Sch Informat Technol, Darlington, NSW 2008, Australia
[6] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Object proposals; object-level saliency cues; salient region detection; video saliency; SEGMENTATION; OPTIMIZATION; CONTRAST; TRACKING; DEEP;
D O I
10.1109/TCYB.2017.2761361
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a novel approach to identify salient object regions in videos via object proposals. The core idea is to solve the saliency detection problem by ranking and selecting the salient proposals based on object-level saliency cues. Object proposals offer a more complete and high-level representation, which naturally caters to the needs of salient object detection. As well as introducing this novel solution for video salient object detection, we reorganize various discriminative saliency cues and traditional saliency assumptions on object proposals. With object candidates, a proposal ranking and voting scheme, based on various object-level saliency cues, is designed to screen out nonsalient parts, select salient object regions, and to infer an initial saliency estimate. Then a saliency optimization process that considers temporal consistency and appearance differences between salient and nonsalient regions is used to refine the initial saliency estimates. Our experiments on public datasets (SegTrackV2, Freiburg-Berkeley Motion Segmentation Dataset, and Densely Annotated Video Segmentation) validate the effectiveness, and the proposed method produces significant improvements over state-of-the-art algorithms.
引用
收藏
页码:3159 / 3170
页数:12
相关论文
共 50 条
  • [21] Video Saliency Detection Using the Propagation of Image Saliency between Frames
    Zhu, Shaotong
    Zhang, Yingtao
    Liang, Tian
    [J]. PROCEEDINGS OF 2017 IEEE 2ND INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2017, : 459 - 467
  • [22] SALIENCY-DRIVEN VERSATILE VIDEO CODING FOR NEURAL OBJECT DETECTION
    Fischer, Kristian
    Fleckenstein, Felix
    Herglotz, Christian
    Kaup, Andre
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1505 - 1509
  • [23] Object Proposals Detection
    Tang Pei
    Wu Xiaoyu
    [J]. 2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 445 - 448
  • [24] Visual saliency object detection using sparse learning
    Nasiripour, Reza
    Farsi, Hassan
    Mohamadzadeh, Sajad
    [J]. IET IMAGE PROCESSING, 2019, 13 (13) : 2436 - 2447
  • [25] An efficient segmentation method using saliency object detection
    Chongbo Zhou
    Chuancai Liu
    [J]. Multimedia Tools and Applications, 2015, 74 : 5623 - 5634
  • [26] An efficient segmentation method using saliency object detection
    Zhou, Chongbo
    Liu, Chuancai
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (15) : 5623 - 5634
  • [27] Video Saliency Detection Using Adaptive Feature Combination and Localized Saliency Computation
    Park, Eunpil
    Han, Byeong-Ju
    Yang, Seungjoon
    Sim, Jae-Young
    [J]. 2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 498 - 504
  • [28] SALISA: Saliency-Based Input Sampling for Efficient Video Object Detection
    Bejnordi, Babak Ehteshami
    Habibian, Amirhossein
    Porikli, Fatih
    Ghodrati, Amir
    [J]. COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 300 - 316
  • [29] Coherency Based Spatio-Temporal Saliency Detection for Video Object Segmentation
    Mahapatra, Dwarikanath
    Gilani, Syed Omer
    Saini, Mukesh Kumar
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (03) : 454 - 462
  • [30] Moving Object Segmentation in Video using Spatiotemporal Saliency and Laplacian Coordinates
    Ramadan, Hiba
    Tairi, Hamid
    [J]. 2016 IEEE/ACS 13TH INTERNATIONAL CONFERENCE OF COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2016,