Quadratic Lie conformal superalgebras related to Novikov superalgebras

被引:5
|
作者
Kolesnikov, Pavel S. [1 ]
Kozlov, Roman A. [1 ,2 ]
Panasenko, Aleksander S. [1 ,2 ]
机构
[1] Sobolev Inst Math, Akad Koptyug Prosp 4, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova Str 1, Novosibirsk 630090, Russia
关键词
Poisson superalgebra; Novikov superalgebra; Gelfand-Dorfman superalgebra; conformal superalgebra; ALGEBRAS; CLASSIFICATION;
D O I
10.4171/JNCG/445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study quadratic Lie conformal superalgebras associated with Novikov superalgebras. For every Novikov superalgebra (V, circle), we construct an enveloping differential Poisson superalgebra U(V) with a derivation d such that u circle v= ud(v) and {u, v } = u circle v - (-1)(vertical bar u parallel to v vertical bar)v circle u for u, v is an element of V. The latter means that the commutator Gelfand-Dorfman superalgebra of V is special. Next, we prove that every quadratic Lie conformal superalgebra constructed on a finite-dimensional special Gelfand-Dorfman super(a)lgebra has a finite faithful conformal representation. This statement is a step towards a solution of the following open problem: whether a finite Lie conformal (super)algebra has a finite faithful conformal representation.
引用
收藏
页码:1485 / 1500
页数:16
相关论文
共 50 条
  • [21] Dirac Operators on Quadratic Lie Superalgebras
    Kang, Yi Fang
    Chen, Zhi Qi
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (08) : 1229 - 1253
  • [22] Dirac Operators on Quadratic Lie Superalgebras
    Yi Fang KANG
    Zhi Qi CHEN
    [J]. Acta Mathematica Sinica,English Series, 2021, 37 (08) : 1229 - 1253
  • [23] Odd-quadratic Lie superalgebras
    Albuquerque, Helena
    Barreiro, Elisabete
    Benayadi, Said
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (02) : 230 - 250
  • [24] Dirac Operators on Quadratic Lie Superalgebras
    Yi Fang Kang
    Zhi Qi Chen
    [J]. Acta Mathematica Sinica, English Series, 2021, 37 : 1229 - 1253
  • [25] Conformal Super-Biderivations on Lie Conformal Superalgebras
    Huang, Zhongxian
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [26] Lie superalgebras of Krichever–Novikov type and their central extensions
    Martin Schlichenmaier
    [J]. Analysis and Mathematical Physics, 2013, 3 : 235 - 261
  • [27] On δ-Horn-Jordan Lie conformal superalgebras
    Guo, Shuangjian
    Wang, Shengxiang
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2020, 155
  • [28] CONFORMAL LIE-SUPERALGEBRAS AND MODULI SPACES
    VAINTROB, A
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1995, 15 (02) : 109 - 122
  • [29] EXTENSIONS OF LIE SUPERALGEBRAS BY HEISENBERG LIE SUPERALGEBRAS
    Bai, Wei
    Liu, Wende
    [J]. COLLOQUIUM MATHEMATICUM, 2018, 153 (02) : 209 - 218
  • [30] Classification of finite simple Lie conformal superalgebras
    Fattori, D
    Kac, VG
    [J]. JOURNAL OF ALGEBRA, 2002, 258 (01) : 23 - 59