Dirac Operators on Quadratic Lie Superalgebras

被引:0
|
作者
Kang, Yi Fang [1 ]
Chen, Zhi Qi [2 ,3 ]
机构
[1] Cent South Univ Forestry & Technol, Inst Math & Phys, Changsha 410004, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic Lie superalgebra; exterior algebra; Clifford algebra; Dirac operator; REPRESENTATIONS; MULTIPLETS; COHOMOLOGY; CONJECTURE; ALGEBRA;
D O I
10.1007/s10114-021-0556-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume that r is a finite dimensional complex Lie superalgebra with a non-degenerate super-symmetric invariant bilinear form, p is a finite dimensional complex super vector space with a non-degenerate super-symmetric bilinear form, and nu : r -> osp(p) is a homomorphism of Lie superalgebras. In this paper, we give a necessary and sufficient condition for r circle plus p to be a quadratic Lie superalgebra. Then, we define the cubic Dirac operator D(g, r) on g and give a formula of (D(g, r))(2.) Finally, we get the Vogan's conjecture for quadratic Lie superalgebras by D(g, r).
引用
收藏
页码:1229 / 1253
页数:25
相关论文
共 50 条