Dirac Cohomology for Lie Superalgebras

被引:0
|
作者
Jing-Song Huang
Pavle Pandžić
机构
[1] Department of Mathematics,
[2] Hong Kong University of Science and Technology,undefined
[3] Clear Water Bay,undefined
[4] Kowloon,undefined
[5] Hong Kong SAR,undefined
[6] Department of Mathematics,undefined
[7] University of Zagreb,undefined
[8] Bijenicka 30,undefined
[9] PP 335,undefined
[10] 10002 Zagreb,undefined
来源
Transformation Groups | 2005年 / 10卷
关键词
Dirac Operator; Topological Group; Similar Nature; Dirac Cohomology; Infinitesimal Character;
D O I
暂无
中图分类号
学科分类号
摘要
Dirac cohomology is a new tool to study representations of semisimple Lie groups and Lie algebras. The aim of this paper is to define a Dirac operator for a Lie superalgebra of Riemannian type and show that this Dirac operator has similar nature as the one for semisimple Lie algebras. As a consequence, we show how to determine the infinitesimal character of a representation by the infinitesimal character of its Dirac cohomology.
引用
收藏
页码:201 / 209
页数:8
相关论文
共 50 条
  • [1] Dirac cohomology for Lie superalgebras
    Huang, JS
    Pandzic, P
    [J]. TRANSFORMATION GROUPS, 2005, 10 (02) : 201 - 209
  • [2] Cohomology of Lie Superalgebras
    Alejandra Alvarez, Maria
    Rosales-Gomez, Javier
    [J]. SYMMETRY-BASEL, 2020, 12 (05):
  • [3] COHOMOLOGY OF LIE-SUPERALGEBRAS
    FUCH, DB
    LEITES, DA
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1984, 37 (12): : 1595 - 1596
  • [4] On cohomology of filiform Lie superalgebras
    Yang, Yong
    Liu, Wende
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 134 : 212 - 234
  • [5] Mixed cohomology of Lie superalgebras
    Su, Yucai
    Zhang, R. B.
    [J]. JOURNAL OF ALGEBRA, 2020, 549 : 1 - 29
  • [6] Detecting cohomology for Lie superalgebras
    Lehrer, Gustav I.
    Nakano, Daniel K.
    Zhang, Ruibin
    [J]. ADVANCES IN MATHEMATICS, 2011, 228 (04) : 2098 - 2115
  • [7] Cohomology of strange Lie superalgebras
    Gruson, C
    [J]. TRANSFORMATION GROUPS, 2000, 5 (01) : 73 - 84
  • [8] Cohomology of Heisenberg Lie superalgebras
    Bai, Wei
    Liu, Wende
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02)
  • [9] The Multiplier and Cohomology of Lie Superalgebras
    Liu, Yang
    Liu, Wende
    [J]. ALGEBRA COLLOQUIUM, 2023, 30 (03) : 371 - 384
  • [10] Cohomology of Lie superalgebras and their generalizations
    Scheunert, M
    Zhang, RB
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (09) : 5024 - 5061