Dirac cohomology for Lie superalgebras

被引:15
|
作者
Huang, JS
Pandzic, P
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Univ Zagreb, Dept Math, Zagreb 10002, Croatia
关键词
D O I
10.1007/s00031-005-1006-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dirac cohomology is a new tool to study representations of semisimple Lie groups and Lie algebras. The aim of this paper is to define a Dirac operator for a Lie superalgebra of Riemannian type and show that this Dirac operator has similar nature as the one for semisimple Lie algebras. As a consequence, we show how to determine the infinitesimal character of a representation by the infinitesimal character of its Dirac cohomology.
引用
收藏
页码:201 / 209
页数:9
相关论文
共 50 条
  • [1] Dirac Cohomology for Lie Superalgebras
    Jing-Song Huang
    Pavle Pandžić
    [J]. Transformation Groups, 2005, 10 : 201 - 209
  • [2] Cohomology of Lie Superalgebras
    Alejandra Alvarez, Maria
    Rosales-Gomez, Javier
    [J]. SYMMETRY-BASEL, 2020, 12 (05):
  • [3] COHOMOLOGY OF LIE-SUPERALGEBRAS
    FUCH, DB
    LEITES, DA
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1984, 37 (12): : 1595 - 1596
  • [4] On cohomology of filiform Lie superalgebras
    Yang, Yong
    Liu, Wende
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 134 : 212 - 234
  • [5] Mixed cohomology of Lie superalgebras
    Su, Yucai
    Zhang, R. B.
    [J]. JOURNAL OF ALGEBRA, 2020, 549 : 1 - 29
  • [6] Detecting cohomology for Lie superalgebras
    Lehrer, Gustav I.
    Nakano, Daniel K.
    Zhang, Ruibin
    [J]. ADVANCES IN MATHEMATICS, 2011, 228 (04) : 2098 - 2115
  • [7] Cohomology of strange Lie superalgebras
    Gruson, C
    [J]. TRANSFORMATION GROUPS, 2000, 5 (01) : 73 - 84
  • [8] Cohomology of Heisenberg Lie superalgebras
    Bai, Wei
    Liu, Wende
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02)
  • [9] The Multiplier and Cohomology of Lie Superalgebras
    Liu, Yang
    Liu, Wende
    [J]. ALGEBRA COLLOQUIUM, 2023, 30 (03) : 371 - 384
  • [10] Cohomology of Lie superalgebras and their generalizations
    Scheunert, M
    Zhang, RB
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (09) : 5024 - 5061