Odd-quadratic Lie superalgebras

被引:18
|
作者
Albuquerque, Helena [1 ]
Barreiro, Elisabete [1 ]
Benayadi, Said [2 ]
机构
[1] Univ Coimbra, Dept Matemat, P-3001454 Coimbra, Portugal
[2] Univ Paul Verlaine Metz, Lab Math & Applicat Metz, CNRS, UMR 7122, F-57045 Metz 1, France
关键词
Basic classical Lie superalgebras; Invariant scalar products; Central extensions of Lie superalgebras; Generalized semi-direct products of Lie superalgebras; INVARIANT; ALGEBRAS;
D O I
10.1016/j.geomphys.2009.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An odd-quadratic Lie superalgebra is a Lie superalgebra with a non-degenerate, supersymmetric, odd, and invariant bilinear form. In this paper we give examples and present some properties of odd-quadratic Lie superalgebras. We introduce the notions of double extension and generalized double extension of odd-quadratic Lie superalgebras and give an inductive description of solvable odd-quadratic Lie superalgebras and of odd-quadratic Lie superalgebras such that the even part is a reductive Lie algebra. We obtain also another interesting description of odd-quadratic Lie superalgebras such that the even part is a reductive Lie algebra without using the notions of double extensions. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:230 / 250
页数:21
相关论文
共 50 条
  • [1] Odd-quadratic Lie superalgebras with a weak filiform module as an odd part
    Barreiro, Elisabete
    Benayadi, Said
    Navarro, Rosa M.
    Sanchez, Jose M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 649 : 22 - 46
  • [2] Odd-quadratic Leibniz superalgebras
    Benayadi, Said
    Mhamdi, Fahmi
    [J]. ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (04) : 287 - 298
  • [3] Odd-quadratic Malcev superalgebras
    Barreiro, Elisabete
    [J]. ALGEBRA & DISCRETE MATHEMATICS, 2010, 9 (02): : 11 - 38
  • [4] A CLASSIFICATION OF SOLVABLE QUADRATIC AND ODD QUADRATIC LIE SUPERALGEBRAS IN LOW DIMENSIONS
    Minh Thanh Duong
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2014, 55 (01): : 119 - 138
  • [5] Quadratic symplectic Lie superalgebras with a filiform module as an odd part
    Barreiro, Elisabete
    Benayadi, Said
    Navarro, Rosa M.
    Sanchez, Jose M.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (04)
  • [6] Uniqueness of the decomposition of lie superalgebras and quadratic lie superalgebras
    Zhu Linsheng
    Daoji Meng
    [J]. Science in China Series A: Mathematics, 2002, 45 (3): : 273 - 279
  • [7] Uniqueness of the decomposition of Lie superalgebras and quadratic Lie superalgebras
    朱林生
    孟道骥
    [J]. Science China Mathematics, 2002, (03) : 273 - 279
  • [8] Uniqueness of the decomposition of Lie superalgebras and quadratic Lie superalgebras
    朱林生
    孟道骥
    [J]. Science in China,SerA., 2002, Ser.A.2002 (03) : 273 - 279
  • [9] Uniqueness of the decomposition of Lie superalgebras and quadratic Lie superalgebras
    Zhu, LS
    Meng, DJ
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (03): : 273 - 279
  • [10] Quadratic symplectic Lie superalgebras and Lie bi-superalgebras
    Barreiro, Elisabete
    Benayadi, Said
    [J]. JOURNAL OF ALGEBRA, 2009, 321 (02) : 582 - 608