Experimental verification of lithium-ion battery prognostics based on an interacting multiple model particle filter

被引:6
|
作者
Wang, Shuai [1 ]
Han, Wei [1 ]
Chen, Lifei [1 ]
Zhang, Xiaochen [2 ]
Pecht, Michael [3 ]
机构
[1] Fujian Normal Univ, Digital Fujian Internet Things Lab Environm, Coll Math & Informat, Fujian 350007, Peoples R China
[2] NARI Technol Co Ltd, Jiangning, Peoples R China
[3] Univ Maryland, CALCE, College Pk, MD 20742 USA
关键词
Lithium-ion (Li-ion) batteries; remaining useful life (RUL); particle filter (PF); interacting multiple model particle filter (IMMPF); probability distribution function (PDF); REMAINING USEFUL LIFE; HEALTH ESTIMATION; CAPACITY FADE; STATE; PREDICTION; DIAGNOSIS;
D O I
10.1177/0142331220961576
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new data-driven prognostic method based on an interacting multiple model particle filter (IMMPF) is proposed for use in the determination of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries and the probability distribution function (PDF) of the uncertainty associated with the RUL. An IMMPF is applied to different state equations. The battery capacity degradation model is very important in the prediction of the RUL of Li-ion batteries. The IMMPF method is applied to the estimation of the RUL of Li-ion batteries using the three improved models. Three case studies are provided to validate the proposed method. The experimental results show that the one-dimensional state equation particle filter (PF) is more suitable for estimating the trend of battery capacity in the long term. The proposed method involving interacting multiple models demonstrated a stable and high prediction accuracy, as well as the capability to narrow the uncertainty in the PDF of the RUL prediction for Li-ion batteries.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries
    Long, Bing
    Xian, Weiming
    Jiang, Lin
    Liu, Zhen
    MICROELECTRONICS RELIABILITY, 2013, 53 (06) : 821 - 831
  • [22] Unsupervised dynamic prognostics for abnormal degradation of lithium-ion battery
    Wang, Cong
    Chen, Yunxia
    APPLIED ENERGY, 2024, 365
  • [23] Remaining useful life prediction of lithium-ion battery based on an improved particle filter algorithm
    Xie, Guo
    Peng, Xi
    Li, Xin
    Hei, Xinhong
    Hu, Shaolin
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (06): : 1365 - 1376
  • [24] SOC and SOH Joint Estimation of Lithium-Ion Battery Based on Improved Particle Filter Algorithm
    Wu, Tiezhou
    Liu, Sizhe
    Wang, Zhikun
    Huang, Yiheng
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 307 - 317
  • [25] SOC and SOH Joint Estimation of Lithium-Ion Battery Based on Improved Particle Filter Algorithm
    Tiezhou Wu
    Sizhe Liu
    Zhikun Wang
    Yiheng Huang
    Journal of Electrical Engineering & Technology, 2022, 17 : 307 - 317
  • [26] Prediction of remaining useful life for lithium-ion battery based on particle filter with residual resampling
    Pan, Chaofeng
    Huang, Aibao
    He, Zhigang
    Lin, Chunjing
    Sun, Yanyan
    Zhao, Shichao
    Wang, Limei
    ENERGY SCIENCE & ENGINEERING, 2021, 9 (08): : 1115 - 1133
  • [27] Lithium-ion Battery Remaining Useful Life Prediction Based on Exponential Smoothing and Particle Filter
    Pan, Chaofeng
    Chen, Yao
    Wang, Limei
    He, Zhigang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (10): : 9537 - 9551
  • [28] Prediction of Remaining Useful Life of Lithium-ion Battery Based on Improved Auxiliary Particle Filter
    Li, Huan
    Liu, Zhitao
    Su, Hongye
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1267 - 1272
  • [29] Remaining useful life prediction of lithium-ion battery based on extended Kalman particle filter
    Duan, Bin
    Zhang, Qi
    Geng, Fei
    Zhang, Chenghui
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (03) : 1724 - 1734
  • [30] Joint State Estimation of Lithium-Ion Battery Based on Dual Adaptive Extended Particle Filter
    Liu Y.
    Lei W.
    Liu Q.
    Gao Y.
    Dong M.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2024, 39 (02): : 607 - 616