Remaining useful life prediction of lithium-ion battery based on an improved particle filter algorithm

被引:17
|
作者
Xie, Guo [1 ]
Peng, Xi [1 ]
Li, Xin [1 ]
Hei, Xinhong [1 ]
Hu, Shaolin [1 ]
机构
[1] Xian Univ Technol, Shaanxi Key Lab Complex Syst Control & Intelligen, Xian 710048, Shaanxi, Peoples R China
来源
基金
美国国家科学基金会; 国家重点研发计划;
关键词
degradation model; lithium-ion battery; particle filter; remaining useful life; KALMAN FILTER; MODEL;
D O I
10.1002/cjce.23675
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Because lithium-ion batteries are the main power source of industrial electronic equipment, their degradation process modelling and remaining useful life (RUL) prediction problems have attracted wide attention. The particle filter (PF) method has been successfully applied to suppress the model uncertainty and predict the RUL of the lithium-ion battery. In order to further enhance the stability of the PF method and realize a more satisfactory prediction result, a RUL prediction method based on the hybrid algorithm, which combines the PF algorithm and extended unbiased finite impulse response (EFIR) filter, is proposed. Firstly, the state space model of capacity degradation for the lithium-ion battery is established, and the model parameters are estimated by the extended Kalman filter (EKF) algorithm. Secondly, a preliminary battery capacity is predicted by using a regularized particle filter. The preliminary predictions with large deviations are diagnosed and repaired by combining the EFIR filter and diagnostic strategy. Finally, the optimized RUL prediction results of the lithium-ion battery are extrapolated based on the failure threshold. The experiment results demonstrate that the proposed method has good stability and accuracy in predicting the RUL of a lithium-ion battery.
引用
下载
收藏
页码:1365 / 1376
页数:12
相关论文
共 50 条
  • [1] Prediction of Remaining Useful Life of Lithium-ion Battery Based on Improved Auxiliary Particle Filter
    Li, Huan
    Liu, Zhitao
    Su, Hongye
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1267 - 1272
  • [2] An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction
    Zhang, Heng
    Miao, Qiang
    Zhang, Xin
    Liu, Zhiwen
    MICROELECTRONICS RELIABILITY, 2018, 81 : 288 - 298
  • [3] Prediction of Remaining Useful Life of the Lithium-Ion Battery Based on Improved Particle Filtering
    Wu, Tiezhou
    Zhao, Tong
    Xu, Siyun
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [4] Remaining useful life prediction of lithium-ion battery based on extended Kalman particle filter
    Duan, Bin
    Zhang, Qi
    Geng, Fei
    Zhang, Chenghui
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (03) : 1724 - 1734
  • [5] Prediction of remaining useful life for lithium-ion battery based on particle filter with residual resampling
    Pan, Chaofeng
    Huang, Aibao
    He, Zhigang
    Lin, Chunjing
    Sun, Yanyan
    Zhao, Shichao
    Wang, Limei
    ENERGY SCIENCE & ENGINEERING, 2021, 9 (08): : 1115 - 1133
  • [6] Lithium-ion Battery Remaining Useful Life Prediction Based on Exponential Smoothing and Particle Filter
    Pan, Chaofeng
    Chen, Yao
    Wang, Limei
    He, Zhigang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (10): : 9537 - 9551
  • [7] Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
    Miao, Qiang
    Xie, Lei
    Cui, Hengjuan
    Liang, Wei
    Pecht, Michael
    MICROELECTRONICS RELIABILITY, 2013, 53 (06) : 805 - 810
  • [8] Remaining useful life prediction of lithium-ion battery based on chaotic particle swarm optimization and particle filter
    Ye, Li-Hua
    Chen, Si-Jian
    Shi, Ye -Fan
    Peng, Ding -Han
    Shi, Ai -Ping
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2023, 18 (05):
  • [9] Remaining useful life prediction of lithium-ion battery based on auto-regression and particle filter
    Lin, Jie
    Wei, Minghua
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2021, 14 (02) : 218 - 237
  • [10] Remaining Useful Life Prediction of Lithium-Ion Battery Based on Gauss-Hermite Particle Filter
    Ma, Yan
    Chen, Yang
    Zhou, Xiuwen
    Chen, Hong
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (04) : 1788 - 1795