Experimental verification of lithium-ion battery prognostics based on an interacting multiple model particle filter

被引:6
|
作者
Wang, Shuai [1 ]
Han, Wei [1 ]
Chen, Lifei [1 ]
Zhang, Xiaochen [2 ]
Pecht, Michael [3 ]
机构
[1] Fujian Normal Univ, Digital Fujian Internet Things Lab Environm, Coll Math & Informat, Fujian 350007, Peoples R China
[2] NARI Technol Co Ltd, Jiangning, Peoples R China
[3] Univ Maryland, CALCE, College Pk, MD 20742 USA
关键词
Lithium-ion (Li-ion) batteries; remaining useful life (RUL); particle filter (PF); interacting multiple model particle filter (IMMPF); probability distribution function (PDF); REMAINING USEFUL LIFE; HEALTH ESTIMATION; CAPACITY FADE; STATE; PREDICTION; DIAGNOSIS;
D O I
10.1177/0142331220961576
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new data-driven prognostic method based on an interacting multiple model particle filter (IMMPF) is proposed for use in the determination of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries and the probability distribution function (PDF) of the uncertainty associated with the RUL. An IMMPF is applied to different state equations. The battery capacity degradation model is very important in the prediction of the RUL of Li-ion batteries. The IMMPF method is applied to the estimation of the RUL of Li-ion batteries using the three improved models. Three case studies are provided to validate the proposed method. The experimental results show that the one-dimensional state equation particle filter (PF) is more suitable for estimating the trend of battery capacity in the long term. The proposed method involving interacting multiple models demonstrated a stable and high prediction accuracy, as well as the capability to narrow the uncertainty in the PDF of the RUL prediction for Li-ion batteries.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Health Prognostics for Lithium-ion Battery Based on Hybrid Data-driven Method
    Ma, Yan
    Shan, Ce
    Hu, Yunfeng
    Chen, Hong
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1832 - 1837
  • [42] Bayesian hierarchical model-based prognostics for lithium-ion batteries
    Mishra, Madhav
    Martinsson, Jesper
    Rantatalo, Matti
    Goebel, Kai
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2018, 172 : 25 - 35
  • [43] The End of Discharge prediction of the Lithium-Ion battery with improved model based on Particle Filtering
    Obkit, Rattanaprasit
    Yu, Jinsong
    Tang, Diyin
    Liu, Hao
    2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [44] A review on prognostics approaches for remaining useful life of lithium-ion battery
    Su, C.
    Chen, H. J.
    2017 INTERNATIONAL CONFERENCE ON NEW ENERGY AND FUTURE ENERGY SYSTEM (NEFES 2017), 2017, 93
  • [45] Lithium-Ion Battery Prognostics with Hybrid Gaussian Process Function Regression
    Peng, Yu
    Hou, Yandong
    Song, Yuchen
    Pang, Jingyue
    Liu, Datong
    ENERGIES, 2018, 11 (06):
  • [46] Modeling a lithium-ion battery based on a threshold model
    Zhang, Zhi
    2015 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2015, : 301 - 305
  • [47] Remaining useful life prediction of lithium-ion battery based on auto-regression and particle filter
    Lin, Jie
    Wei, Minghua
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2021, 14 (02) : 218 - 237
  • [48] Estimation of state-of-charge based on unscented Kalman particle filter for storage lithium-ion battery
    Gao, Shengwei
    Kang, Mingren
    Li, Longnv
    Liu, Xiaoming
    JOURNAL OF ENGINEERING-JOE, 2019, (16): : 1858 - 1863
  • [49] Remaining Useful Life Prediction of Lithium-Ion Battery Based on Gauss-Hermite Particle Filter
    Ma, Yan
    Chen, Yang
    Zhou, Xiuwen
    Chen, Hong
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (04) : 1788 - 1795
  • [50] Prognostics of lithium-ion batteries using particle swarm optimization and particle filtering
    College of Information and Communication Engineering, Harbin Engineering University, No. 145, Nantong Ave, Nangang Dist, Harbin, China
    ICIC Express Lett Part B Appl., 8 (2325-2332):