Notes on computational aspects of the fractional-order viscoelastic model

被引:15
|
作者
Niedziela, Maciej [1 ]
Wlazlo, Jaroslaw [2 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Podgorna 50, PL-65246 Zielona Gora, Poland
[2] Fraunhofer Inst Ind Math, Dept Transport Proc, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
关键词
Fractional derivative; Fractional differential equation; Mittag-Leffler function; Viscoelasticity; FINITE VISCOELASTICITY; DERIVATIVE MODEL; MAXWELL MODEL; RELAXATION; CALCULUS; BEHAVIOR; FLUID;
D O I
10.1007/s10665-017-9911-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with the computational aspect of the investigation of the relaxation properties of viscoelastic materials. The constitutive fractional Zener model is considered under continuous deformation with a jump at the origin. The analytical solution of this equation is obtained by the Laplace transform method. It is derived in a closed form in the terms of the Mittag-Leffler function. The method of numerical evaluation of the Mittag-Leffler function for arbitrary negative arguments which corresponds to physically meaningful interpretation is demonstrated. A numerical example is given to illustrate the effectiveness of this result.
引用
收藏
页码:91 / 105
页数:15
相关论文
共 50 条
  • [41] Fractional-order ADRC framework for fractional-order parallel systems
    Li, Zong-yang
    Wei, Yi-heng
    Wang, Jiachang
    Li, Aug
    Wang, Jianli
    Wang, Yong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1813 - 1818
  • [42] Stabilization Criterion of Fractional-Order PDμ Controllers for Interval Fractional-Order Plants with One Fractional-Order Term
    Gao, Zhe
    Cai, Xiaowu
    Zhai, Lirong
    Liu, Ting
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10424 - 10430
  • [43] Synchronization in a fractional-order model of pancreatic -cells
    Zambrano-Serrano, E.
    Munoz-Pacheco, J. M.
    Gomez-Pavon, L. C.
    Luis-Ramos, A.
    Chen, G.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (7-9): : 907 - 919
  • [44] Fractional-Order Model of a Commercial Ear Simulator
    Vastarouchas, Costas
    Psychalinos, Costas
    Elwakil, Ahmed S.
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [45] Fractional-order dynamical model for electricity markets
    Dassios, Ioannis
    Kerci, Taulant
    Baleanu, Dumitru
    Milano, Federico
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) : 8349 - 8361
  • [46] Bifurcation analysis of fractional-order VD model
    Ramesh, P.
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2021, 11 (5-6) : 542 - 565
  • [47] HIV/AIDS epidemic fractional-order model
    Zafar, Zain Ul Abadin
    Rehan, Kashif
    Mushtaq, M.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (07) : 1298 - 1315
  • [48] PEMFC Fractional-order Subspace Identification Model
    Sun Chengshuo
    Qi Zhidong
    Qin Hao
    Shan Liang
    CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY, 2022, 24 (03) : 151 - 160
  • [49] Numerical analysis of fractional-order tumor model
    Sohail, Ayesha
    Arshad, Sadia
    Javed, Sana
    Maqbool, Khadija
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (05)
  • [50] A Fractional-order Model for Liquid Metal Batteries
    Xu, Cheng
    Cheng, Shijie
    Wang, Kangli
    Jiang, Kai
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 4690 - 4695