Notes on computational aspects of the fractional-order viscoelastic model

被引:15
|
作者
Niedziela, Maciej [1 ]
Wlazlo, Jaroslaw [2 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Podgorna 50, PL-65246 Zielona Gora, Poland
[2] Fraunhofer Inst Ind Math, Dept Transport Proc, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
关键词
Fractional derivative; Fractional differential equation; Mittag-Leffler function; Viscoelasticity; FINITE VISCOELASTICITY; DERIVATIVE MODEL; MAXWELL MODEL; RELAXATION; CALCULUS; BEHAVIOR; FLUID;
D O I
10.1007/s10665-017-9911-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with the computational aspect of the investigation of the relaxation properties of viscoelastic materials. The constitutive fractional Zener model is considered under continuous deformation with a jump at the origin. The analytical solution of this equation is obtained by the Laplace transform method. It is derived in a closed form in the terms of the Mittag-Leffler function. The method of numerical evaluation of the Mittag-Leffler function for arbitrary negative arguments which corresponds to physically meaningful interpretation is demonstrated. A numerical example is given to illustrate the effectiveness of this result.
引用
收藏
页码:91 / 105
页数:15
相关论文
共 50 条
  • [21] Fractional-order backstepping strategy for fractional-order model of COVID-19 outbreak
    Veisi, Amir
    Delavari, Hadi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3479 - 3496
  • [22] An investigation of the effect of relative humidity on viscoelastic properties of flax fiber reinforced polymer by fractional-order viscoelastic model
    Xu, Bowen
    Blok, Rijk
    Teuffel, Patrick
    COMPOSITES COMMUNICATIONS, 2023, 37
  • [23] Application of fractional-order control for vibration suppression of viscoelastic beams
    Bahraini, Seyed Masoud Sotoodeh
    Eghtesad, Mohammad
    Farid, Mehrdad
    INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING, 2014, 3 (01)
  • [24] Fractional-Order Gas Film Model
    Tang, Xu
    Luo, Ying
    Han, Bin
    FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [25] A Novel Fractional-Order RothC Model
    Bohaienko, Vsevolod
    Diele, Fasma
    Marangi, Carmela
    Tamborrino, Cristiano
    Aleksandrowicz, Sebastian
    Wozniak, Edyta
    MATHEMATICS, 2023, 11 (07)
  • [26] A Fractional-Order Dynamic PV Model
    AbdelAty, Amr M.
    Radwan, Ahmed G.
    Elwakil, Ahmed
    Psychalinos, Costas
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 607 - 610
  • [27] A fractional-order infectivity SIR model
    Angstmann, C. N.
    Henry, B. I.
    McGann, A. V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 452 : 86 - 93
  • [28] A fractional-order model for MINMOD Millennium
    Cho, Yongjin
    Kim, Imbunm
    Sheen, Dongwoo
    MATHEMATICAL BIOSCIENCES, 2015, 262 : 36 - 45
  • [29] A Study of a Fractional-Order Cholera Model
    Javidi, Mohammad
    Ahmad, Bashir
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (05): : 2195 - 2206
  • [30] Fractional-Order in a Macroeconomic Dynamic Model
    David, S. A.
    Quintino, D. D.
    Soliani, J.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2142 - 2146